An Efficient Homotopy-Based Poincare-Lindstedt Method for the Periodic Steady-State Analysis of Nonlinear Autonomous Oscillators

被引:0
|
作者
Chen, Zhongming [1 ]
Batselier, Kim [1 ]
Liu, Haotian [2 ]
Wong, Ngai [1 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Cadence Design Syst Inc, Austin, TX USA
关键词
SIMULATION; CIRCUITS; ALGORITHMS; VAN;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The periodic steady-state analysis of nonlinear systems has always been an important topic in electronic design automation (EDA). For autonomous systems, the mainstream approaches, like shooting Newton and harmonic balance, are difficult to employ since the period itself becomes an unknown. This paper presents an innovative state-space homotopy-based Poincare-Lindstedt method, with a novel Pade approximation of the stretched time axis, that effectively overcomes this hurdle. Examples demonstrate the excellent efficiency and scalability of the proposed approach.
引用
收藏
页码:283 / 288
页数:6
相关论文
共 50 条
  • [1] HomSSPICE: A homotopy-based circuit simulator for periodic steady-state analysis of oscillators
    Ma, WL
    Trajkovic, LJ
    Mayaram, K
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL I, PROCEEDINGS, 2002, : 645 - 648
  • [2] A hyperbolic Lindstedt-Poincare method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators
    Y.Y.Chen
    S.H.Chen
    K.Y.Sze
    Acta Mechanica Sinica, 2009, 25 (05) : 721 - 729
  • [3] Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by hyperbolic Lindstedt-Poincare method
    Chen ShuHui
    Chen YangYang
    Sze Kam Yim
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 (03) : 692 - 702
  • [4] Robust Periodic Steady State Analysis of Autonomous Oscillators Based on Generalized Eigenvalues
    Boroujeni, R. Mirzavand
    ter Maten, E. J. W.
    Beelen, T. G. J.
    Schilders, W. H. A.
    Abdipour, A.
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2010), 2012, 16 : 293 - 302
  • [5] A Parallel Harmonic Balance Method Based on GPU for Efficient Periodic Steady-State Analysis
    Wang, Zhengzhuo
    Sha, Yanliang
    Ouyang, Lingyun
    Chen, Quan
    Hu, Jianguo
    2024 IEEE 17th International Conference on Solid-State and Integrated Circuit Technology, ICSICT 2024, 2024,
  • [6] Periodic steady-state analysis of free-running oscillators
    Houben, SHMJ
    Maubach, JM
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING, PROCEEDINGS, 2001, 18 : 217 - 224
  • [7] Periodic steady-state analysis of oscillators with a specified oscillation frequency
    Vytyaz, Igor
    Lee, David C.
    Lu, Suihua
    Mehrotra, Amit
    Moon, Un-Ku
    Mayaram, Kartikeya
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 1073 - 1076
  • [8] Periodic Steady-State Analysis of Relaxation Oscillators Using Discrete Singular Convolution Method
    Moskovko, Artem
    Vityaz, Oleg
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2017, : 506 - 510
  • [9] STEADY-STATE ANALYSIS OF NONLINEAR CIRCUITS WITH PERIODIC INPUTS
    APRILLE, TJ
    TRICK, TN
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1972, 60 (01): : 108 - &
  • [10] Modified lindstedt-poincaré method for obtaining resonance periodic solutions of nonlinear non-autonomous oscillators
    Kangkang G.
    Shuqian C.
    Transactions of Tianjin University, 2014, 20 (1) : 66 - 71