Micromagnetics of thin films in the presence of Dzyaloshinskii-Moriya interaction

被引:12
作者
Davoli, Elisa [1 ]
Di Fratta, Giovanni [1 ]
Praetorius, Dirk [1 ]
Ruggeri, Michele [2 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
Micromagnetics; Landau-Lifshitz-Gilbert equation; magnetic thin films; Dzyaloshinskii-Moriya interaction; Gamma-convergence; finite elements; FINITE-ELEMENT SCHEME; BOUNDARY VORTICES; FERROMAGNETIC-FILMS; EFFECTIVE DYNAMICS; COMPACTNESS RESULT; DOMAIN-WALLS; CONVERGENT; LIMIT; HOMOGENIZATION; REGULARITY;
D O I
10.1142/S0218202522500208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the thin-film limit of the micromagnetic energy functional in the presence of bulk Dzyaloshinskii-Moriya interaction (DMI). Our analysis includes both a stationary Gamma-convergence result for the micromagnetic energy, as well as the identification of the asymptotic behavior of the associated Landau-Lifshitz-Gilbert equation. In particular, we prove that, in the limiting model, part of the DMI term behaves like the projection of the magnetic moment onto the normal to the film, contributing this way to an increase in the shape anisotropy arising from the tnagnetostatic self-energy. Finally, we discuss a convergent finite element approach for the approximation of the time-dependent case and use it to numerically compare the original three-dimensional (3D) model with the 2D thin-film limit.
引用
收藏
页码:911 / 939
页数:29
相关论文
共 67 条
[1]   Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator [J].
Abert, Claas ;
Hrkac, Gino ;
Page, Marcus ;
Praetorius, Dirk ;
Ruggeri, Michele ;
Suess, Dieter .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (06) :639-654
[2]   Numerical methods for the stray-field calculation: A comparison of recently developed algorithms [J].
Abert, Claas ;
Exl, Lukas ;
Selke, Gunnar ;
Drews, Andre ;
Schrefl, Thomas .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 326 :176-185
[3]   Existence and regularity for mixtures of micromagnetic materials [J].
Acerbi, Emilio ;
Fonseca, Irene ;
Mingione, Giuseppe .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2072) :2225-2243
[4]   ON GLOBAL WEAK SOLUTIONS FOR LANDAU-LIFSHITZ EQUATIONS - EXISTENCE AND NONUNIQUENESS [J].
ALOUGES, F ;
SOYEUR, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (11) :1071-1084
[5]   Homogenization of composite ferromagnetic materials [J].
Alouges, Francois ;
Di Fratta, Giovanni .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2182)
[6]   A convergent and precise finite element scheme for Landau-Lifschitz-Gilbert equation [J].
Alouges, Francois ;
Kritsikis, Evaggelos ;
Steiner, Jutta ;
Toussaint, Jean-Christophe .
NUMERISCHE MATHEMATIK, 2014, 128 (03) :407-430
[7]   A NEW FINITE ELEMENT SCHEME FOR LANDAU-LIFCHITZ EQUATIONS [J].
Alouges, Francois .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02) :187-196
[8]  
[Anonymous], 2001, ADV NUMERICAL MATH
[9]   The 2020 skyrmionics roadmap [J].
Back, C. ;
Cros, V ;
Ebert, H. ;
Everschor-Sitte, K. ;
Fert, A. ;
Garst, M. ;
Ma, Tianping ;
Mankovsky, S. ;
Monchesky, T. L. ;
Mostovoy, M. ;
Nagaosa, N. ;
Parkin, S. S. P. ;
Pfleiderer, C. ;
Reyren, N. ;
Rosch, A. ;
Taguchi, Y. ;
Tokura, Y. ;
von Bergmann, K. ;
Zang, Jiadong .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (36)
[10]  
Bartels S., 2015, NUMERICAL METHODS NO, DOI [10.1007/978-3-319-13797-1, DOI 10.1007/978-3-319-13797-1]