Synergistic effects of B-In codoping in zone-melted Bi0.48Sb1.52Te3-based thermoelectric

被引:29
作者
Wang, Hongxiang [1 ,2 ]
Wu, Gang [1 ,2 ]
Yan, Zipeng [1 ]
Tan, Xiaojian [1 ,2 ]
Cai, Jianfeng [1 ]
Hu, Haoyang [1 ]
Sun, Peng [1 ,2 ]
Liu, Guoqiang [1 ,2 ]
Jiang, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Bismuth telluride; Thermoelectric performance; Power factor; Zone-melting; B-In codoping; P-TYPE BI0.48SB1.52TE3; THERMAL-CONDUCTIVITY; PERFORMANCE; FIGURE; MERIT; POWER; ALLOY; BISBTE; HEAT;
D O I
10.1016/j.cej.2021.130381
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bismuth-telluride-based alloys are the unique commercial thermoelectric materials near room temperature, and the commonly used zone-melting method is efficient for the mass production. Since the ZTs of zone-melted samples has stagnated around 1.2 for decades, it is urgent for the scientific and industrial societies to break through this bottleneck. Herein, we report simultaneously improved power factor and ZT values in p-type Bi0.48Sb1.52Te3 materials by the addition of amorphous boron and metal indium. B and In dopants not only effectively increase the hole concentration and the density of state effective mass, leading to a high power factor of 55 mu W cm-1 K-2, but also introduce various phonon scattering centers to obviously suppress the lattice thermal conductivity. The synergistic effects yield a ZTmax of 1.45 at 350 K, as well as a ZTave of 1.20 and sigma S2ave of 41 mu W cm-1 K-2 (300 - 500 K) in the Bi0.48Sb1.515In0.005Te3 + 0.6 wt% B sample, suggesting tiny B-In codoping is a promising strategy for the further development of bismuth telluride thermoelectrics.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Texture-dependent thermoelectric properties of nano-structured Bi2Te3 [J].
Bao, Deyu ;
Chen, Jie ;
Yu, Yuan ;
Liu, Weidi ;
Huang, Linsen ;
Han, Guang ;
Tang, Jun ;
Zhou, Dali ;
Yang, Lei ;
Chen, Zhi-Gang .
CHEMICAL ENGINEERING JOURNAL, 2020, 388
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   High temperature thermoelectric properties evolution of Pb1-xSnxTe based alloys [J].
Ben-Ayoun, Dana ;
Sadia, Yatir ;
Gelbstein, Yaniv .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 722 :33-38
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[6]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[7]   Enhanced thermoelectric performance in Cd doped CuInTe2 compounds [J].
Cheng, N. ;
Liu, R. ;
Bai, S. ;
Shi, X. ;
Chen, L. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (16)
[8]   High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe [J].
Deng, Rigui ;
Su, Xianli ;
Hao, Shiqiang ;
Zheng, Zheng ;
Zhang, Min ;
Xie, Hongyao ;
Liu, Wei ;
Yan, Yonggao ;
Wolverton, Chris ;
Uher, Ctirad ;
Kanatzidis, Mercouri G. ;
Tang, Xinfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1520-1535
[9]  
Goldsmid HJ, 2010, SPRINGER SER MATER S, V121, P1
[10]   Advances in thermoelectric materials research: Looking back and moving forward [J].
He, Jian ;
Tritt, Terry M. .
SCIENCE, 2017, 357 (6358)