Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. II. Generalized Turing systems

被引:25
作者
Nikitin, A. G. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
reaction-diffusion systems; quasilinear parabolic systems; turing systems; group classification; symmetries;
D O I
10.1016/j.jmaa.2006.10.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Group classification of systems of two coupled non-linear reaction-diffusion equation with a diagonal diffusion matrix is carried out. Symmetries of diffusion systems with singular diffusion matrix and additional first order derivative terms are described. (C) 2006 Elsevier Inc. All fights reserved.
引用
收藏
页码:666 / 690
页数:25
相关论文
共 20 条
[11]   Symmetry analysis of an integrable reaction-diffusion equation [J].
Kraenkel, RA ;
Senthilvelan, M .
CHAOS SOLITONS & FRACTALS, 2001, 12 (03) :463-474
[12]  
MARTINA I, 1998, PHYS REV D, V58
[13]  
MURRAY JD, 1991, MAT BIOL
[14]   Group classification of systems of non-linear reaction-diffusion equations with general diffusion matrix. I. Generalized Ginzburg-Landau equations [J].
Nikitin, A. G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :615-628
[15]  
Nikitin A.G., 2005, UKR MATH B, V2, P153
[16]   Systems of reaction diffusion equations and their symmetry properties [J].
Nikitin, AG ;
Wiltshire, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (04) :1666-1688
[17]  
NIKITIN AG, 2004, MATHPH0411028 ARXIV
[18]  
NIKITIN AG, 2000, SYMMETRIES NONLINEAR, P47
[19]   TRAVELLING-WAVE SOLUTIONS OF A NERVE-CONDUCTION EQUATION [J].
RINZEL, J ;
KELLER, JB .
BIOPHYSICAL JOURNAL, 1973, 13 (12) :1313-1337