Fluoride Rearrangement Reactions of Polyphenyl- and Polyvinylsilsesquioxanes as a Facile Route to Mixed Functional Phenyl, Vinyl T10 and T12 Silsesquioxanes

被引:89
作者
Asuncion, M. Z. [1 ]
Laine, R. M. [1 ,2 ]
机构
[1] Univ Michigan, Dept Macromol Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
POLYHEDRAL OLIGOMERIC SILSESQUIOXANES; ORGANIC-INORGANIC NANOCOMPOSITES; MOBILITY MASS-SPECTROMETRY; BUILDING-BLOCKS; SUBSTITUTED SILSESQUIOXANES; ELECTRONIC-PROPERTIES; OCTAVINYLSILSESQUIOXANE; POLYMERS; OLIGOSILSESQUIOXANES; POLYCONDENSATION;
D O I
10.1021/ja9087743
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polyphenylsilsesquioxane [PhSiO1.5](n) (PPS) and polyvinylsilsesquioxane [vinylSiO(1.5)](n) (PVS) are polymeric byproducts of the syntheses of the related T-8 octamers; [PhSiO1.5](8) and [vinylSiO(1.5)](8). Here we demonstrate that random-structured PPS and PVS rearrange in the presence of catalytic amounts of Bu4N+F- in THF to form mixed-functionality polyhedral T-10 and T-12 silsesquioxane (SQ) cages in 80-90% yields. Through control of the initial ratio of starting materials, we can statistically tailor the average values for x for the vinyl(x)Ph(10-x)T(10) and vinyl(x)Ph(12-x)T(12) products. Metathetical coupling of x approximate to 2 vinyl cages with 4-bromostyrene produces SQs with an average of two 4-bromostyrenyl substituents. These products can be reacted via Heck coupling with vinylSi(OEt)(3) to produce SQs with vinylSi(OEt)(3) end-caps. Alternately, Heck coupling with the originally produced x approximate to 2 vinyl SQs leads to "beads on a chain" SQ oligomers joined by conjugated organic tethers. The functionalized T-10 and T-12 cages, metathesis, and Heck compounds were characterized by standard analytical methods (MALDI-TOF MS, H-1 and C-13 NMR spectroscopy, TGA, and GPC). MALDI confirms the elaboration of the cages after each synthetic step, and GPC verifies the presence of higher molecular weight SQ oligomers. TGA shows that all of these compounds are thermally stable in air (>300 degrees C). The UV-vis absorption and emission behavior of the Heck oligomers reveals exceptional red-shifts (>= 60 nm) compared to the vinylSi(OEt)(3) end-capped model compounds, suggesting electronic interactions through the SQ silica cores. Such phenomena may imply 3-D conjugation through the cores themselves.
引用
收藏
页码:3723 / 3736
页数:14
相关论文
共 78 条
  • [21] Gilman JW, 1996, J APPL POLYM SCI, V60, P591, DOI 10.1002/(SICI)1097-4628(19960425)60:4<591::AID-APP12>3.0.CO
  • [22] 2-2
  • [23] In situ oxygen-atom erosion study of polyhedral oligomeric silsesquioxane-siloxane copolymer
    Gonzalez, RI
    Phillips, SH
    Hoflund, GB
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2000, 37 (04) : 463 - 467
  • [24] Grubbs R.H., 2003, HDB METATHESIS, V3
  • [25] Grubbs R.H., 1978, PROG INORG CHEM, V24, P1
  • [26] THE INCORPORATION OF TRANSITION-METALS INTO POLYHEDRAL OLIGOSILSESQUIOXANE POLYMERS
    HADDAD, TS
    LICHTENHAN, JD
    [J]. JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS, 1995, 5 (03): : 237 - 246
  • [27] The dynamic status quo of polyhedral silsesquioxane coordination chemistry
    Hanssen, RWJM
    van Santen, RA
    Abbenhuis, HCL
    [J]. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2004, (04) : 675 - 683
  • [28] Harrison PG, 1997, MAIN GROUP MET CHEM, V20, P515
  • [29] Jeon HG, 2000, POLYM INT, V49, P453, DOI 10.1002/(SICI)1097-0126(200005)49:5<453::AID-PI332>3.0.CO
  • [30] 2-H