Multiscale QM/MM molecular dynamics simulations of the trimeric major light-harvesting complex II

被引:35
|
作者
Maity, Sayan [1 ]
Daskalakis, Vangelis [2 ]
Elstner, Marcus [3 ,4 ]
Kleinekathofer, Ulrich [1 ]
机构
[1] Jacobs Univ Bremen, Dept Phys & Earth Sci, Campus Ring 1, D-28759 Bremen, Germany
[2] Cyprus Univ Technol, Dept Chem Engn, 30 Archbishop Kyprianou Str, CY-3603 Limassol, Cyprus
[3] Karlsruhe Inst Technol KIT, Inst Phys Chem, Kaiserstr 12, D-76131 Karlsruhe, Germany
[4] Karlsruhe Inst Technol KIT, Inst Biol Interfaces IBG2, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
EXCITATION-ENERGY TRANSFER; OPTICAL-SPECTRA; THEORETICAL-EXAMINATION; LHCII COMPLEX; HIGHER-PLANTS; FMO COMPLEX; DENSITY; PROTEIN; ANTENNA; MODEL;
D O I
10.1039/d1cp01011e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photosynthetic processes are driven by sunlight. Too little of it and the photosynthetic machinery cannot produce the reductive power to drive the anabolic pathways. Too much sunlight and the machinery can get damaged. In higher plants, the major Light-Harvesting Complex (LHCII) efficiently absorbs the light energy, but can also dissipate it when in excess (quenching). In order to study the dynamics related to the quenching process but also the exciton dynamics in general, one needs to accurately determine the so-called spectral density which describes the coupling between the relevant pigment modes and the environmental degrees of freedom. To this end, Born-Oppenheimer molecular dynamics simulations in a quantum mechanics/molecular mechanics (QM/MM) fashion utilizing the density functional based tight binding (DFTB) method have been performed for the ground state dynamics. Subsequently, the time-dependent extension of the long-range-corrected DFTB scheme has been employed for the excited state calculations of the individual chlorophyll-a molecules in the LHCII complex. The analysis of this data resulted in spectral densities showing an astonishing agreement with the experimental counterpart in this rather large system. This consistency with an experimental observable also supports the accuracy, robustness, and reliability of the present multi-scale scheme. To the best of our knowledge, this is the first theoretical attempt on this large complex system is ever made to accurately simulate the spectral density. In addition, the resulting spectral densities and site energies were used to determine the exciton transfer rate within a special pigment pair consisting of a chlorophyll-a and a carotenoid molecule which is assumed to play a role in the balance between the light harvesting and quenching modes.
引用
收藏
页码:7407 / 7417
页数:11
相关论文
共 50 条
  • [21] Multiple active zones in hybrid QM/MM molecular dynamics simulations for large biomolecular systems
    Torras, Juan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (15) : 9959 - 9972
  • [22] A perspective on the major light-harvesting complex dynamics under the effect of pH, salts, and the photoprotective PsbS protein
    Navakoudis, Eleni
    Stergiannakos, Taxiarchis
    Daskalakis, Vangelis
    PHOTOSYNTHESIS RESEARCH, 2023, 156 (01) : 163 - 177
  • [23] Anisotropic Circular Dichroism of Light-Harvesting Complex II in Oriented Lipid Bilayers: Theory Meets Experiment
    Akhtar, Parveen
    Lindorfer, Dominik
    Lingvay, Monika
    Pawlak, Krzysztof
    Zsiros, Otto
    Siligardi, Giuliano
    Javorfi, Tamas
    Dorogi, Marta
    Ughy, Bettina
    Garab, Gyozo
    Renger, Thomas
    Lambrev, Petar H.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (05) : 1090 - 1098
  • [24] How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II
    Renger, T.
    Madjet, M. E.
    Knorr, A.
    Mueh, F.
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (12) : 1497 - 1509
  • [25] The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling
    Ramos, Felipe Cardoso
    Nottoli, Michele
    Cupellini, Lorenzo
    Mennucci, Benedetta
    CHEMICAL SCIENCE, 2019, 10 (42) : 9650 - 9662
  • [26] Oligolysine induced excitation deactivation of the light-harvesting - harvesting complex II in lipid nanodisc
    Zhang, Mei
    Yamano, Nami
    Wang, Peng
    Cao, Zan-Xia
    Zhang, Jian-Ping
    CHEMICAL PHYSICS LETTERS, 2024, 846
  • [27] Conformation of Light-Harvesting Complex II Trimer Depends upon Its Binding Site
    Kim, Eunchul
    Kubota-Kawai, Hisako
    Kawai, Fumihiro
    Yokono, Makio
    Minagawa, Jun
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (31) : 5855 - 5865
  • [28] Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment
    Son, Minjung
    Pinnola, Alberta
    Schlau-Cohen, Gabriela S.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2020, 1861 (5-6):
  • [29] Excitation Dynamics of the Light-Harvesting Complex 2 from Thermochromatium Tepidum
    Yang Fan
    Yu Long-Jiang
    Wang Peng
    Ai Xi-Cheng
    Wang Zheng-Yu
    Zhang Jian-Ping
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (07) : 2021 - 2030
  • [30] Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II
    Ilioaia, Cristian
    Johnson, Matthew P.
    Liao, Pen-Nan
    Pascal, Andrew A.
    van Grondelle, Rienk
    Walla, Peter J.
    Ruban, Alexander V.
    Robert, Bruno
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (31) : 27247 - 27254