Multiscale QM/MM molecular dynamics simulations of the trimeric major light-harvesting complex II

被引:35
|
作者
Maity, Sayan [1 ]
Daskalakis, Vangelis [2 ]
Elstner, Marcus [3 ,4 ]
Kleinekathofer, Ulrich [1 ]
机构
[1] Jacobs Univ Bremen, Dept Phys & Earth Sci, Campus Ring 1, D-28759 Bremen, Germany
[2] Cyprus Univ Technol, Dept Chem Engn, 30 Archbishop Kyprianou Str, CY-3603 Limassol, Cyprus
[3] Karlsruhe Inst Technol KIT, Inst Phys Chem, Kaiserstr 12, D-76131 Karlsruhe, Germany
[4] Karlsruhe Inst Technol KIT, Inst Biol Interfaces IBG2, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
EXCITATION-ENERGY TRANSFER; OPTICAL-SPECTRA; THEORETICAL-EXAMINATION; LHCII COMPLEX; HIGHER-PLANTS; FMO COMPLEX; DENSITY; PROTEIN; ANTENNA; MODEL;
D O I
10.1039/d1cp01011e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photosynthetic processes are driven by sunlight. Too little of it and the photosynthetic machinery cannot produce the reductive power to drive the anabolic pathways. Too much sunlight and the machinery can get damaged. In higher plants, the major Light-Harvesting Complex (LHCII) efficiently absorbs the light energy, but can also dissipate it when in excess (quenching). In order to study the dynamics related to the quenching process but also the exciton dynamics in general, one needs to accurately determine the so-called spectral density which describes the coupling between the relevant pigment modes and the environmental degrees of freedom. To this end, Born-Oppenheimer molecular dynamics simulations in a quantum mechanics/molecular mechanics (QM/MM) fashion utilizing the density functional based tight binding (DFTB) method have been performed for the ground state dynamics. Subsequently, the time-dependent extension of the long-range-corrected DFTB scheme has been employed for the excited state calculations of the individual chlorophyll-a molecules in the LHCII complex. The analysis of this data resulted in spectral densities showing an astonishing agreement with the experimental counterpart in this rather large system. This consistency with an experimental observable also supports the accuracy, robustness, and reliability of the present multi-scale scheme. To the best of our knowledge, this is the first theoretical attempt on this large complex system is ever made to accurately simulate the spectral density. In addition, the resulting spectral densities and site energies were used to determine the exciton transfer rate within a special pigment pair consisting of a chlorophyll-a and a carotenoid molecule which is assumed to play a role in the balance between the light harvesting and quenching modes.
引用
收藏
页码:7407 / 7417
页数:11
相关论文
共 50 条
  • [1] DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex
    Maity, Sayan
    Bold, Beatrix M.
    Prajapati, Jigneshkumar Dahyabhai
    Sokolov, Monja
    Kubar, Tomas
    Elstner, Marcus
    Kleinekathoefer, Ulrich
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (20) : 8660 - 8667
  • [2] Structure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II
    Schlau-Cohen, Gabriela S.
    Fleming, Graham R.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2012, 65 (06) : 583 - 590
  • [3] Insights into Energy Transfer in Light-Harvesting Complex II Through Machine-Learning Assisted Simulations
    Betti, Elena
    Saraceno, Piermarco
    Cignoni, Edoardo
    Cupellini, Lorenzo
    Mennucci, Benedetta
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (21) : 5188 - 5200
  • [4] Development of Molecular Dynamics Parameters and Theoretical Analysis of Excitonic and Optical Properties in the Light-Harvesting Complex II
    Zhu, Zhe
    Higashi, Masahiro
    Saito, Shinji
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 21 (01) : 413 - 427
  • [5] Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants
    Connelly, JP
    Muller, MG
    Hucke, M
    Gatzen, G
    Mullineaux, CW
    Ruban, AV
    Horton, P
    Holzwarth, AR
    JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (10): : 1902 - 1909
  • [6] QM/MM molecular dynamics simulations of the hydration of Mg(II) and Zn(II) ions
    Riahi, Saleh
    Roux, Benoit
    Rowley, Christopher N.
    CANADIAN JOURNAL OF CHEMISTRY, 2013, 91 (07) : 552 - 558
  • [7] Conformational Dynamics of Light-Harvesting Complex II in a Native Membrane Environment
    Azadi-Chegeni, Fatemeh
    Ward, Meaghan E.
    Perin, Giorgio
    Simionato, Diana
    Morosinotto, Tomas
    Baldus, Marc
    Pandit, Anjali
    BIOPHYSICAL JOURNAL, 2021, 120 (02) : 270 - 283
  • [8] An Exciton Dynamics Model of Bryopsis corticulans Light-Harvesting Complex II
    Nguyen, Hoang Long
    Do, Thanh Nhut
    Akhtar, Parveen
    Jansen, Thomas L. C.
    Knoester, Jasper
    Wang, Wenda
    Shen, Jian-Ren
    Lambrev, Petar H.
    Tan, Howe-Siang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (04) : 1134 - 1143
  • [9] Pigment Interactions in Light-harvesting Complex II in Different Molecular Environments
    Akhtar, Parveen
    Dorogi, Marta
    Pawlak, Krzysztof
    Kovacs, Laszlo
    Bota, Attila
    Kiss, Terez
    Garab, Gyozo
    Lambrev, Petar H.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (08) : 4877 - 4886
  • [10] Ultrafast excited-state dynamics of Luteins in the major light-harvesting complex LHCII
    Pedraza-Gonzalez, Laura
    Accomasso, Davide
    Cupellini, Lorenzo
    Granucci, Giovanni
    Mennucci, Benedetta
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2024, 23 (02) : 303 - 314