Real-Time Estimation of Parameter Maps

被引:0
|
作者
Gentsch, Maik [1 ]
King, Rudibert [1 ]
机构
[1] Tech Univ Berlin, Chair Measurement & Control, Str 17 Juni 135, D-10623 Berlin, Germany
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Model-hosed supervision; Parameter estimation; Unscented Kalman Filter; Interpolation;
D O I
10.1016/j.ifacol.2020.12.039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
System parameters might have a distinct operating point dependency that is unknown. Nonlinear state observers or Kalman Filters can be applied to estimate such parameters in real-time, revealing the unknown parameter value in the vicinity of the current operating point. Commonly, these methods are prone to forget the revealed dependence continuously when a different operating point is approached. This paper provides a procedure to preserve past estimates and reveal the hidden parameter map during operation of the system. Parameter dependencies are approximated via adjustable interpolants. In particular, ready-to-use formulae for piecewise linear and cubic Hermite interpolants are provided. An existing approach as well as a newly derived approach to embed these interpolants within an Unscented Kalman Filter are presented and discussed. While the first approach utilizes the parameter map estimation directly within the Kalman Filter scheme, the new approach expands the Kalman Filter steps by a recursive map adaption scheme and is thereby far less computationally expensive. Both methods are compared and validated via numerical simulations, where a superior performance is achieved compared to the standard parameter estimation within the Kalman Filter approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:2391 / 2396
页数:6
相关论文
共 50 条
  • [1] Real-time vehicle dynamics parameter estimation
    Shin, Kwang-Keun
    Proceedings of the ASME Dynamic Systems and Control Division 2005, Pts A and B, 2005, : 313 - 318
  • [2] Real-time parameter estimation in the frequency domain
    Morelli, EA
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (05) : 812 - 818
  • [3] Real-time parameter estimation in the frequency domain
    Morelli, EA
    AIAA GUIDANCE, NAVIGATION, AND CONTROL CONFERENCE, VOLS 1-3: A COLLECTION OF TECHNICAL PAPERS, 1999, : 477 - 487
  • [4] Real-time parameter estimation of a MIMO system
    Kaplanoglu, Erkan
    Safak, Koray K.
    Varol, H. Selcuk
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 1287 - 1291
  • [5] Multibody Dynamics Techniques for Real-Time Parameter Estimation
    Sandu, Corina
    Kolansky, Jeremy
    Botha, Theunis
    Els, Schalk
    ADVANCED AUTONOMOUS VEHICLE DESIGN FOR SEVERE ENVIRONMENTS, 2015, 44 : 221 - 241
  • [6] ON PARAMETER ESTIMATION FOR DIFFUSION PROCESSES IN REAL-TIME BIOSENSORS
    Shamaiah, Manohar
    Shen, Xiaohu
    Vikalo, Haris
    2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 1090 - 1094
  • [7] Real-Time Parameter Estimation for Arbitrary Aerial Manipulators
    Young, Michael
    Bhattacharya, Raktim
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON CONTROL, MEASUREMENT AND INSTRUMENTATION (CMI), 2016, : 87 - 91
  • [8] PAYLOAD PARAMETER REAL-TIME ESTIMATION FOR LIGHTWEIGHT VEHICLES
    Huang, Xiaoyu
    Wang, Junmin
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 2, 2012, : 733 - 740
  • [9] REAL-TIME HF CHANNEL PARAMETER-ESTIMATION
    PERL, JM
    KAGAN, D
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1986, 34 (01) : 54 - 58
  • [10] Real-time Pose Estimation on Elevation Maps for Wheeled Vehicles
    Jordan, Julian
    Zell, Andreas
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1337 - 1342