Spacelike surfaces in anti de Sitter four-space from a contact viewpoint

被引:7
作者
Izumiya, Shyuichi [1 ]
Pei, Donghe [2 ]
Romero Fuster, Maria del Carmen [3 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Univ Valencia, Fac Matemat, Dept Geometria & Topol, E-46100 Valencia, Spain
关键词
MINKOWSKI SPACE; GAUSS MAPS; SINGULARITIES; CODIMENSION-2; SUBMANIFOLDS;
D O I
10.1134/S0081543809040130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the notions of (S (t) (1) x S (s) (2) )-nullcone Legendrian Gauss maps and S (+) (2) -nullcone Lagrangian Gauss maps on spacelike surfaces in anti de Sitter 4-space. We investigate the relationships between singularities of these maps and geometric properties of surfaces as an application of the theory of Legendrian/Lagrangian singularities. By using S (+) (2) -nullcone Lagrangian Gauss maps, we define the notion of S (+) (2) -nullcone Gauss-Kronecker curvatures and show a Gauss-Bonnet type theorem as a global property. We also introduce the notion of horospherical Gauss maps which have geometric properties different from those of the above Gauss maps. As a consequence, we can say that anti de Sitter space has much richer geometric properties than the other space forms such as Euclidean space, hyperbolic space, Lorentz-Minkowski space and de Sitter space.
引用
收藏
页码:156 / 173
页数:18
相关论文
共 26 条
[1]  
Arnold V.I., 1985, Singularities of Differentiable Maps, V1
[2]  
Banchoff T., 1982, RES NOTES MATH, V55
[3]  
BROCKER T, 1975, LMS LECT NOTE SER, V17
[4]  
Bruce J. W., 1992, CURVES SINGULARITIES
[5]  
BRYANT RL, 1988, ASTERISQUE, V154, P321
[6]  
CHANDRASEKHAR S, 1983, INT SER MONOGR PHYS, V69
[7]  
EPSTEIN CL, 1986, J REINE ANGEW MATH, V372, P96
[8]  
GUILLEMIN V., 2010, AMS Chelsea Ser., V370
[9]   Singularities of lightlike hypersurfaces in Minkowskifour-space [J].
Izumiya, S ;
Kossowski, M ;
Pei, DH ;
Fuster, MCR .
TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (01) :71-88
[10]   Singularities of hyperbolic Gauss maps [J].
Izumiya, S ;
Pei, DH ;
Sano, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :485-512