The boundary integral method for the steady rotating Navier-Stokes equations in exterior domain (I): the existence of solution

被引:1
作者
An, Rong [1 ]
Li, Kaitai [2 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 01期
基金
中国国家自然科学基金;
关键词
Rotating Navier-Stokes equations; Exterior domain; Boundary integral method; FINITE-ELEMENT METHODS; FLOW; FLUID;
D O I
10.1007/s00030-009-0041-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply the boundary integral method to the steady rotating Navier-Stokes equations in exterior domain. Introducing some open ball which decomposes the exterior domain into a finite domain and a infinite domain, we obtain a coupled problem by the steady rotating Navier-Stokes equations in finite domain and a boundary integral equation without using the artificial boundary condition. For the coupled problem, we show the existence of solution in a convex set.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 2007, THESIS U HEIDELBERG
[2]   On the numerical simulation of the unsteady free fall of a solid in a fluid:: I.: The Newtonian case [J].
Boenisch, S. ;
Heuveline, V. .
COMPUTERS & FLUIDS, 2007, 36 (09) :1434-1445
[3]  
BONISCH S, 2008, OBERWOLFACH SEMINARS, V37, P333
[4]  
BONISH S, 2006, THESIS U HEIDELBERG
[5]  
BONISH S, 2004, 200432 SFB U HEID
[6]  
Dunne T., 2006, FLUID STRUCTURE INTE, P110
[7]   An Lq-analysis of viscous fluid flow past a rotating obstacle [J].
Farwig, R .
TOHOKU MATHEMATICAL JOURNAL, 2006, 58 (01) :129-147
[8]   Strong solutions to the navier-stokes equations around a rotating obstacle [J].
Galdi, GP ;
Silvestre, AL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (03) :331-350
[9]  
Galdi GP, 2002, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 1, P653
[10]   Steady flow of a Navier-Stokes fluid around a rotating obstacle [J].
Galdi, GP .
JOURNAL OF ELASTICITY, 2003, 71 (1-3) :1-31