Lie point symmetries of differential-difference equations

被引:17
作者
Levi, D. [1 ,2 ]
Winternitz, P. [3 ,4 ]
Yamilov, R. I. [5 ]
机构
[1] Univ Roma Tre, Dipartimento Ingn Elettron, I-00146 Rome, Italy
[2] Sezione Ist Nazl Fis Nucl, I-00146 Rome, Italy
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[5] Russian Acad Sci, Ufa Inst Math, Ufa 450008, Russia
基金
加拿大自然科学与工程研究理事会; 俄罗斯基础研究基金会;
关键词
INTEGRABILITY;
D O I
10.1088/1751-8113/43/29/292002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an algorithm for determining the Lie point symmetries of differential equations on fixed non-transforming lattices, i.e. equations involving both continuous and discrete-independent variables. The symmetries of a specific integrable discretization of the Krichever-Novikov equation, the Toda lattice and Toda field theory are presented as examples of the general method.
引用
收藏
页数:14
相关论文
共 28 条
[1]   Symmetry approach to the integrability problem [J].
Adler, VÉ ;
Shabat, AB ;
Yamilov, RI .
THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 125 (03) :1603-1661
[2]  
[Anonymous], 1983, Sov. Math. Dokl
[3]  
[Anonymous], 1979, SOV MATH DOKL
[4]   Difference schemes with point symmetries and their numerical tests [J].
Bourlioux, A. ;
Cyr-Gagnon, C. ;
Winternitz, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6877-6896
[5]  
DORODNITSYN V, 2001, GROUP PROPERTIES DIF
[6]  
DUBROVIN BA, 1985, ITOGI NAUKI TEKHNIKI, P179
[7]   INTEGRABLE NON-LINEAR KLEIN-GORDON EQUATIONS AND TODA-LATTICES [J].
FORDY, AP ;
GIBBONS, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (01) :21-30
[8]   HOLOMORPHIC BUNDLES OVER ALGEBRAIC-CURVES AND NON-LINEAR EQUATIONS [J].
KRICHEVER, IM ;
NOVIKOV, SP .
RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (06) :53-79
[9]   DARBOUX TRANSFORMATIONS FOR HIGHER-RANK KADOMTSEV-PETVIASHVILI AND KRICHEVER-NOVIKOV EQUATIONS [J].
LATHAM, GA ;
PREVIATO, E .
ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) :405-433
[10]   Conditions for the existence of higher symmetries of evolutionary equations on the lattice [J].
Levi, D ;
Yamilov, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6648-6674