MnO2 core-shell type materials for high-performance supercapacitors: A short review

被引:43
作者
Bhat, T. S. [1 ,2 ]
Jadhav, S. A. [1 ]
Beknalkar, S. A.
Patil, S. S. [2 ]
Patil, P. S. [2 ]
机构
[1] Shivaji Univ, Sch Nanosci & Biotechnol, Kolhapur 416 004, Maharashtra, India
[2] Shivaji Univ, Dept Phys, Thin Film Mat Lab, Kolhapur 416 004, Maharashtra, India
关键词
Energy storage; MnO (2); Core-shell nanostructures; Supercapacitors; Electrochemical analysis; CHARGE STORAGE MECHANISM; ELECTRODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; MANGANESE-DIOXIDE; FACILE SYNTHESIS; HYDROTHERMAL SYNTHESIS; FLEXIBLE ELECTRODE; CATHODE MATERIAL; HOLLOW SPHERES; ENERGY DENSITY;
D O I
10.1016/j.inoche.2022.109493
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Energy storage systems have gotten a lot of attention in recent decades, especially in industries like hybrid electric vehicles and smart portable electronics. MnO2 based materials have been extensively studied for application in pseudocapacitors due to their high theoretical specific capacitance, high power density, fast charge/discharge capability, strong chemical and thermal stability, long cycling life, natural abundance, environmental friendliness, and inexpensive cost. The material's core/shell structure is one of the most effective techniques to create high surface area and high conductivity for providing more Faradaic reaction sites and accelerating charge transfer, respectively, and thus to improve supercapacitors performance. This review paper examines the morphology and synthesis to better comprehend the MnO2 core-shell type materials. The electroactive materials applied in the core/shell structure include metal oxides, metal hydroxides, metal chalcogenides, carbon materials, conducting polymers etc. Finally, the challenges and next steps in developing MnO2 core-shell type materials for high-performance supercapacitors (SCs) are discussed.
引用
收藏
页数:16
相关论文
共 124 条
[1]   Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance [J].
Aghazadeh, Mustafa ;
Maragheh, Mohammad Ghannadi ;
Ganjali, Mohammad Reza ;
Norouzi, Parviz ;
Faridbod, Farnoush .
APPLIED SURFACE SCIENCE, 2016, 364 :141-147
[2]   High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries [J].
Ali, Gomaa A. M. ;
Yusoff, Mashitah M. ;
Shaaban, Essam R. ;
Chong, Kwok Feng .
CERAMICS INTERNATIONAL, 2017, 43 (11) :8440-8448
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[5]   Recent trends in electrolytes for supercapacitors [J].
Bhat, T. S. ;
Patil, P. S. ;
Rakhi, R. B. .
JOURNAL OF ENERGY STORAGE, 2022, 50
[6]   Nanoarchitectonics of hierarchical PbS material for all-solid-state asymmetric supercapacitor [J].
Bhat, T. S. ;
Shinde, A., V ;
Alat, A. A. ;
Patil, P. S. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (13) :10368-10378
[7]   Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films [J].
Bhat, T. S. ;
Shinde, A. V. ;
Devan, R. S. ;
Teli, A. M. ;
Ma, Y. R. ;
Kim, J. H. ;
Patil, P. S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (01)
[8]   A review of porous manganese oxide materials [J].
Brock, SL ;
Duan, NG ;
Tian, ZR ;
Giraldo, O ;
Zhou, H ;
Suib, SL .
CHEMISTRY OF MATERIALS, 1998, 10 (10) :2619-2628
[9]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[10]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50