Fixed Point Results On θ-metric Spaces via Simulation Functions

被引:19
作者
Chanda, Ankush [1 ]
Damjanovic, Bosko [2 ]
Dey, Lakshmi Kanta [1 ]
机构
[1] Natl Inst Technol Durgapur, Dept Math, Durgapur, India
[2] Univ Belgrade, Fac Agr, Beograd, Serbia
关键词
theta-metric space; simulation functions; Z-contraction; modified Z-contraction;
D O I
10.2298/FIL1711365C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent article, Khojasteh et al. introduced a newclass of simulation functions, Z-contractions, with blending over known contractive conditions in the literature. Subsequently, in this paper, we extend and generalize the results in theta-metric context and we discuss some fixed point results in connection with existing ones. Also, we originate the notion of modified Z-contractions and explore the existence and uniqueness of fixed points of such functions on the said spaces. Finally we include examples to instantiate our main results.
引用
收藏
页码:3365 / 3375
页数:11
相关论文
共 14 条
[1]  
Argoubi H, 2015, J NONLINEAR SCI APPL, V8, P1082
[2]  
BANACH S., 1922, Fundam. Math., V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[3]  
Chatterjea S.K., 1972, C. R. Acad. Bulg. Sci, V25, P727, DOI [10.1501/Commua1_0000000548, DOI 10.1501/COMMUA1_0000000548]
[4]   Fixed point of contractive mappings in generalized metric spaces [J].
Das, Pratulananda ;
Dey, Lakshmi Kanta .
MATHEMATICA SLOVACA, 2009, 59 (04) :499-504
[5]  
Dey L. K., 2015, BULL ALLAHABAD MATH, V30, P173
[6]  
George R, 2015, J NONLINEAR SCI APPL, V8, P1005
[7]  
Kadelburg Z., 2015, SARAJEVO J MATH, V11, P235
[8]  
Kadelburg Z., 2016, J. Adv. Math. Stud, V9, P83
[9]   SOME RESULTS ON FIXED POINTS .2. [J].
KANNAN, R .
AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (04) :405-&
[10]   A New Approach to the Study of Fixed Point Theory for Simulation Functions [J].
Khojasteh, Farshid ;
Shukla, Satish ;
Radenovic, Stojan .
FILOMAT, 2015, 29 (06) :1189-1194