ANALYTIC TORSION AND R-TORSION OF WITT REPRESENTATIONS ON MANIFOLDS WITH CUSPS

被引:12
作者
Albin, Pierre [1 ]
Rochon, Frederic [2 ]
Sher, David [3 ,4 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Quebec, Dept Math, Montreal, PQ, Canada
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] De Paul Univ, Dept Math Sci, Chicago, IL 60614 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
HYPERBOLIC MANIFOLDS; REIDEMEISTER TORSION; GLUING FORMULA; COHOMOLOGY; GROWTH; ASYMPTOTICS; EIGENVALUES; LAPLACIAN; HOMOLOGY;
D O I
10.1215/00127094-2018-0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Cheeger-Miiller theorem for unimodular representations satisfying a Witt condition on a noncompact manifold with cusps. This class of spaces includes all noncompact hyperbolic spaces of finite volume, but we do not assume that the metric has constant curvature nor that the link of the cusp is a torus. We use renormalized traces in the sense of Melrose to define the analytic torsion, and we relate it to the intersection R-torsion of Dar of the natural compactification to a stratified space. Our proof relies on our recent work on the behavior of the Hodge Laplacian spectrum on a closed manifold undergoing degeneration to a manifold with fibered cusps.
引用
收藏
页码:1883 / 1950
页数:68
相关论文
共 56 条