On the Bernoulli automorphism of reversible linear cellular automata

被引:6
作者
Chang, Chih-Hung [1 ]
Chang, Huilan [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 81148, Taiwan
关键词
Measure-preserving transformation; Invertible cellular automata; Strong mixing; Bernoulli automorphism; LIMIT MEASURES; DYNAMICS; Z(M);
D O I
10.1016/j.ins.2016.01.062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This investigation studies the ergodic properties of reversible linear cellular automata over Z(m) for m is an element of N. We show that a reversible linear cellular automaton is either a Bernoulli automorphism or non-ergodic. This gives an affirmative answer to an open problem proposed by Pivato [20] for the case of reversible linear cellular automata. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 26 条