Dynamics, Chaos Control, and Synchronization in a Fractional-Order Samardzija-Greller Population System with Order Lying in (0,2)

被引:12
作者
Al-khedhairi, A. [1 ]
Askar, S. S. [1 ,2 ]
Matouk, A. E. [3 ]
Elsadany, A. [4 ]
Ghazel, M. [5 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
[3] Majmaah Univ, Dept Basic Engn Sci, Coll Engn, Al Majmaah 11952, Saudi Arabia
[4] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies Al Kharj, Math Dept, Al Kharj, Saudi Arabia
[5] Hail Univ, Math Dept, Fac Sci, Hail 2440, Saudi Arabia
关键词
TURBINE GOVERNING SYSTEM; BEHAVIORS; MODEL; CIRCUIT;
D O I
10.1155/2018/6719341
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper demonstrates dynamics, chaos control, and synchronization in Samardzija-Greller population model with fractional order between zero and two. The fractional-order case is shown to exhibit rich variety of nonlinear dynamics. Lyapunov exponents are calculated to confirm the existence of wide range of chaotic dynamics in this system. Chaos control in this model is achieved via a novel linear control technique with the fractional order lying in ( 1, 2). Moreover, a linear feedback control method is used to control the fractional-order model to its steady states when 0 < alpha < 2. In addition, the obtained results illustrate the role of fractional parameter on controlling chaos in this model. Furthermore, nonlinear feedback synchronization scheme is also employed to illustrate that the fractional parameter has a stabilizing role on the synchronization process in this system. The analytical results are confirmed by numerical simulations.
引用
收藏
页数:14
相关论文
共 45 条
[1]  
Aghababa M. P., 2016, COMPLEXITY, V21
[2]   Adaptive synchronization of Chua's circuits with fully unknown parameters [J].
Agiza, HN ;
Matouk, AE .
CHAOS SOLITONS & FRACTALS, 2006, 28 (01) :219-227
[3]   Synchronization between fractional-order Ravinovich-Fabrikant and Lotka-Volterra systems [J].
Agrawal, S. K. ;
Srivastava, M. ;
Das, S. .
NONLINEAR DYNAMICS, 2012, 69 (04) :2277-2288
[4]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[5]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[6]  
[Anonymous], 2012, INT J NONLIN SCI NUM
[7]  
[Anonymous], 2010, J NONLINEAR SYST APP
[8]  
[Anonymous], 2011, J FRACT CALC APPL
[9]  
[Anonymous], 1913, The Foundations of Science: Science and Hypothesis, The Value of Science, Science and Method
[10]  
Costello J. S., 1999, NONLINEAR J, V1, P11