Towards a coupled physical and chemical model for tonalite-trondhjemite-granodiorite magma formation

被引:34
作者
Jackson, MD [1 ]
Gallagher, K
Petford, N
Cheadle, MJ
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
[2] Kingston Univ, Ctr Earth & Environm Sci Res, Kingston upon Thames KT1 2EE, Surrey, England
[3] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA
关键词
TTG; partial melting; segregation; compaction; periodicity; underplating; UNDERPLATED BASALTIC CRUST; NORTHERN VOLCANIC ZONE; CONTINENTAL-CRUST; MELT SEGREGATION; GRANITIC MAGMAS; LIQUID-PHASE; 10; KBAR; GENERATION; MANTLE; AMPHIBOLITE;
D O I
10.1016/j.lithos.2004.05.004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Tonalite-trondhjemite-granodiorite (TTG) magmatism provides a window into the composition of the Earth's earliest crust, and on rates of heat transfer during the Archaean. However, the tectonic setting in which these magmas form, and the physical mechanisms by which TTG melt segregates from its partially molten source rock, are poorly understood. Here we present some simple models aimed at predicting the compositions of partial melts which segregate from thickened mafic (amphibolitic or eclogitic) lower crust. Our results suggest that buoyancy-driven compaction with melt flow along grain edges can yield large volumes of segregated TTG melt over geologically realistic timescales (4000 years-10 My). Petrologic diversity is predicted even from a homogenous protolith: the chemical composition of the segregated melt varies both spatially and temporally, and is governed not only by the composition and mineralogy of the source rock, the depth of melting, and the melting reactions, but also by the physical processes through which the melt migrates and segregates from its partially molten host. This simple model represents the first step towards a properly coupled physical and chemical model of TTG formation, which is closely constrained by geochemical, field and laboratory data. Such models will compliment the existing geochemical work and help resolve some of the outstanding issues concerning TTG petrogenesis. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:43 / 60
页数:18
相关论文
共 85 条
[1]   Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust [J].
Annen, C ;
Sparks, RSJ .
EARTH AND PLANETARY SCIENCE LETTERS, 2002, 203 (3-4) :937-955
[2]   CRITICAL PHENOMENA IN RHEOLOGY OF PARTIALLY MELTED ROCKS [J].
ARZI, AA .
TECTONOPHYSICS, 1978, 44 (1-4) :173-184
[3]   GENERATION OF SODIUM-RICH MAGMAS FROM NEWLY UNDERPLATED BASALTIC CRUST [J].
ATHERTON, MP ;
PETFORD, N .
NATURE, 1993, 362 (6416) :144-146
[4]   NONLINEAR-WAVES IN COMPACTING MEDIA [J].
BARCILON, V ;
RICHTER, FM .
JOURNAL OF FLUID MECHANICS, 1986, 164 :429-448
[5]  
Barker F., 1979, Trondhjemites, Dacites and Related Rocks
[6]   DEHYDRATION MELTING AND WATER-SATURATED MELTING OF BASALTIC AND ANDESITIC GREENSTONES AND AMPHIBOLITES AT 1, 3, AND 6.9KB [J].
BEARD, JS ;
LOFGREN, GE .
JOURNAL OF PETROLOGY, 1991, 32 (02) :365-401
[7]   UNDERPLATING AND PARTIAL MELTING - IMPLICATIONS FOR MELT GENERATION AND EXTRACTION [J].
BERGANTZ, GW .
SCIENCE, 1989, 245 (4922) :1093-1095
[8]  
BERGANTZ GW, 1994, MAGMATIC SYSTEMS, pCH13
[9]   THE TRANSPORT OF HEAT AND MATTER BY FLUIDS DURING METAMORPHISM [J].
BICKLE, MJ ;
MCKENZIE, D .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1987, 95 (03) :384-392
[10]   Adakite-like lavas from Antisana volcano (Ecuador): Evidence for slab melt metasomatism beneath the Andean Northern volcanic zone [J].
Bourdon, E ;
Eissen, JP ;
Monzier, M ;
Robin, C ;
Martin, H ;
Cotten, J ;
Hall, ML .
JOURNAL OF PETROLOGY, 2002, 43 (02) :199-217