Brauer-Manin obstruction to the local-global principle for the embedding problem

被引:2
作者
Pal, Ambrus [1 ]
Schlank, Tomer M. [2 ]
机构
[1] Imperial Coll, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[2] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
英国工程与自然科学研究理事会;
关键词
Embedding problems; local-global principle; Brauer-Manin obstruction; APPROXIMATION PROPERTIES; HOMOGENEOUS SPACES;
D O I
10.1142/S1793042122500786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an analogue of the Brauer-Manin obstruction to the local-global principle for embedding problems over global fields. We will prove the analogues of several fundamental structural results. In particular we show that the (algebraic) Brauer-Manin obstruction is the only one to strong approximation when the embedding problem has abelian kernel.
引用
收藏
页码:1535 / 1565
页数:31
相关论文
共 15 条
[1]  
Borovoi M, 1996, J REINE ANGEW MATH, V473, P181
[2]   Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms [J].
Colliot-Thelene, Jean-Louis ;
Xu, Fei .
COMPOSITIO MATHEMATICA, 2009, 145 (02) :309-363
[3]  
Colliot-Thlne JL., 1987, Duke Math. J, V54, P375, DOI [10.1215/S0012-7094-8, 10.1215/S0012-7094-87-05420-2, DOI 10.1215/S0012-7094-87-05420-2]
[4]  
Demarche C, 2017, ANN I FOURIER, V67, P1009
[5]  
DWYER W. G., 1975, J PURE APPL ALGEBRA, V6, P177, DOI DOI 10.1016/0022-4049(75)90006-7
[6]  
Harari PD, 2007, B SOC MATH FR, V135, P549
[7]   0 Splitting varieties for triple Massey products [J].
Hopkins, Michael J. ;
Wickelgren, Kirsten G. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (05) :1304-1319
[8]  
Milne JS., 1986, Arithmetic Duality Theorems, Perspectives in Mathematics
[9]  
Pl A., 2021, PREPRINTS
[10]   On the local-global principle for embedding problems over global fields [J].
Roquette, P .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 141 (1) :369-379