Fast Flaw Contour Recognition Algorithm in Online Plate Ultrasonic Testing

被引:0
作者
Guo, Dayong [1 ]
Zhang, Bowei [1 ]
Que, Kailiang [1 ]
Chen, Bin [1 ]
He, Guang [1 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
来源
ISAF: 2009 18TH IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRICS | 2009年
关键词
Contour Recognition; Convex Hull; Edge Detection; Ultrasonic Testing; CONVEX-HULL ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Flaw contour recognition is very important to heavy Plate Ultrasonic Testing (PUT) which is used to classify the plates used for ships, pressure vessels and nuclear power plants. The state-of-the-art contour recognition algorithm is too slow or inexact to be used in field. A Fast Flaw Contour Recognition (FFCR) algorithm is developed which is a hybrid of Convex Hull (CH) and Edge Detection (ED). This paper focuses on how to combine CH and ED to describe planar concave flaw contour and to recongize the flaw local outline quickly and exactly.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 11 条
[1]   On a simple, practical, optimal, output-sensitive randomized planar convex hull algorithm [J].
Bhattacharya, BK ;
Sen, S .
JOURNAL OF ALGORITHMS, 1997, 25 (01) :177-193
[2]   Primal dividing and dual pruning: Output-sensitive construction of four-dimensional polytopes and three-dimensional Voronoi diagrams [J].
Chan, TM ;
Snoeyink, J ;
Yap, CK .
DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (04) :433-454
[3]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[4]  
Eddy W. F., 1977, ACM Transactions on Mathematical Software, V3, P398, DOI 10.1145/355759.355766
[5]  
Graham R. L., 1972, Information Processing Letters, V1, P132, DOI 10.1016/0020-0190(72)90045-2
[6]  
Jarvis R. A., 1973, Information Processing Letters, V2, P18, DOI 10.1016/0020-0190(73)90020-3
[7]   THE ULTIMATE PLANAR CONVEX-HULL ALGORITHM [J].
KIRKPATRICK, DG ;
SEIDEL, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (01) :287-299
[8]   OPTIMAL REAL-TIME ALGORITHM FOR PLANAR CONVEX HULLS [J].
PREPARATA, FP .
COMMUNICATIONS OF THE ACM, 1979, 22 (07) :402-405
[9]   CONVEX HULLS OF FINITE SETS OF POINTS IN 2 AND 3 DIMENSIONS [J].
PREPARATA, FP ;
HONG, SJ .
COMMUNICATIONS OF THE ACM, 1977, 20 (02) :87-93
[10]   Randomized quickhull [J].
Wenger, R .
ALGORITHMICA, 1997, 17 (03) :322-329