Type-1/type-2 fuzzy logic systems optimization with RNA genetic algorithm for double inverted pendulum

被引:35
作者
Sun, Zhe [1 ]
Wang, Ning [1 ]
Bi, Yunrui [2 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, Natl Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Type-2 fuzzy logic system; RNA genetic algorithm; Control systems; Double inverted pendulum; PARAMETER-ESTIMATION; CONTROLLERS; DESIGN;
D O I
10.1016/j.apm.2014.04.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a hybrid type-2 fuzzy logic system architecture with the aid of RNA genetic algorithm for a double inverted pendulum system. As an extension of type-1 fuzzy logic system, type-2 fuzzy logic system can effectively improve the control performance by uncertainty of membership function especially when we have to confront with corrupted data or unpredicted external disturbances. In this proposed method, the related parameters of type-1 and type-2 fuzzy logic systems are respectively optimized by using RNA genetic algorithm. Through computer simulation and comparisons, the better performance can be achieved by using optimized type-2 fuzzy logic system with RNA genetic algorithm. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 85
页数:16
相关论文
共 36 条
  • [21] Interval type-2 fuzzy neural network control for X-Y-Theta motion control stage using linear ultrasonic motors
    Lin, Faa-Jeng
    Chen, Syuan-Yi
    Chou, Po-Huan
    Shieh, Po-Huang
    [J]. NEUROCOMPUTING, 2009, 72 (4-6) : 1138 - 1151
  • [22] Adaptive hybrid type-2 intelligent sliding mode control for uncertain nonlinear multivariable dynamical systems
    Lin, Tsung-Chih
    Chen, Ming-Che
    [J]. FUZZY SETS AND SYSTEMS, 2011, 171 (01) : 44 - 71
  • [23] Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms
    Martinez, Ricardo
    Castillo, Oscar
    Aguilar, Luis T.
    [J]. INFORMATION SCIENCES, 2009, 179 (13) : 2158 - 2174
  • [24] Interval type-2 fuzzy logic systems made simple
    Mendel, Jerry M.
    John, Robert I.
    Liu, Feilong
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (06) : 808 - 821
  • [25] Neuhauser C, 1997, GENETICS, V145, P519
  • [26] Simulation and evaluation of dual fully fuzzy linear systems by fuzzy neural network
    Otadi, Mahmood
    Mosleh, Maryam
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (10) : 5026 - 5039
  • [27] GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms
    Tang, AM
    Quek, C
    Ng, GS
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (04) : 769 - 781
  • [28] DNA computing based RNA genetic algorithm with applications in parameter estimation of chemical engineering processes
    Tao, Jili
    Wang, Ning
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2007, 31 (12) : 1602 - 1618
  • [29] A protein inspired RNA genetic algorithm for parameter estimation in hydrocracking of heavy oil
    Wang, Kangtai
    Wang, Ning
    [J]. CHEMICAL ENGINEERING JOURNAL, 2011, 167 (01) : 228 - 239
  • [30] A novel RNA genetic algorithm for parameter estimation of dynamic systems
    Wang, Kangtai
    Wang, Ning
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (11A) : 1485 - 1493