Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations

被引:20
作者
Tariboon, Jessada [1 ]
Ntouyas, Sotiris K. [2 ]
Sudsutad, Weerawat [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
Riemann-Liouville fractional derivative; Hadamard fractional integral; existence; uniqueness; fixed point theorems; BOUNDARY-VALUE-PROBLEMS; INTEGRODIFFERENTIAL EQUATIONS;
D O I
10.1186/s13661-014-0253-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new class of boundary value problems consisting of a fractional differential equation of Riemann-Liouville type, , , subject to the Hadamard fractional integral conditions , . Existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating the results obtained are also presented.
引用
收藏
页数:16
相关论文
共 24 条
[1]   Existence of fractional neutral functional differential equations [J].
Agarwal, R. P. ;
Zhou, Yong ;
He, Yunyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1095-1100
[2]  
AHMAD B, 2013, J FUNCT SPACE APPL
[3]   New Existence Results for Nonlinear Fractional Differential Equations with Three-Point Integral Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[4]   A Study of Nonlinear Fractional Differential Equations of Arbitrary Order with Riemann-Liouville Type Multistrip Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Alsaedi, Ahmed .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
[5]   Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
BOUNDARY VALUE PROBLEMS, 2011, :1-9
[6]  
Baleanu D., 2012, Fractional calculus: models and numerical methods
[7]   On Lp-solutions for a class of sequential fractional differential equations [J].
Baleanu, Dumitru ;
Mustafa, Octavian G. ;
Agarwal, Ravi P. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :2074-2081
[8]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[9]   Mellin transform analysis and integration by parts for Hadamard-type fractional integrals [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :1-15
[10]   Compositions of Hadamard-type fractional integration operators and the semigroup property [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) :387-400