Convergence rates of the Kaczmarz-Tanabe method for linear systems

被引:5
作者
Kang, Chuan-gang [1 ]
机构
[1] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
关键词
Kaczmarz-Tanabe method; Convergence rates; Singular value decomposition;
D O I
10.1016/j.cam.2021.113577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Kaczmarz-Tanabe method for exact and inexact linear systems. The Kaczmarz-Tanabe method is derived from the Kaczmarz method, but is more stable than that. We analyze the convergence and the convergence rate of the Kaczmarz-Tanabe method based on the singular value decomposition theory, and discover two important factors, i.e., the second maximum singular value of Q and the minimum non-zero singular value of A, that influence the convergence speed and the amplitude of fluctuation of the Kaczmarz-Tanabe method (even for the Kaczmarz method). Numerical tests verify the theoretical results of the Kaczmarz-Tanabe method. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 17 条
  • [1] The Dual Kaczmarz Algorithm
    Aboud, Anna
    Curl, Emelie
    Harding, Steven N.
    Vaughan, Mary
    Weber, Eric S.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2020, 165 (01) : 133 - 148
  • [2] [Anonymous], 1937, Bull Int Acad Pol Sic Let Cl Sci Math Nat
  • [3] Ben-Israel Adi, 2003, Generalized Inverses: Theory and Applications, V15
  • [4] Projection methods: an annotated bibliography of books and reviews
    Censor, Yair
    Cegielski, Andrzej
    [J]. OPTIMIZATION, 2015, 64 (11) : 2343 - 2358
  • [5] Elman H.C., 1982, ITERATIVE METHODS LA, V229
  • [6] Engl H., 1996, REGULARIZATION INVER
  • [7] ALGEBRAIC RECONSTRUCTION TECHNIQUES (ART) FOR 3-DIMENSIONAL ELECTRON MICROSCOPY AND X-RAY PHOTOGRAPHY
    GORDON, R
    BENDER, R
    HERMAN, GT
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1970, 29 (03) : 471 - &
  • [8] AIR Tools II: algebraic iterative reconstruction methods, improved implementation
    Hansen, Per Christian
    Jorgensen, Jakob Sauer
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (01) : 107 - 137
  • [9] Preasymptotic convergence of randomized Kaczmarz method
    Jiao, Yuling
    Jin, Bangti
    Lu, Xiliang
    [J]. INVERSE PROBLEMS, 2017, 33 (12)
  • [10] A PROJECTION METHOD FOR SOLVING NONSYMMETRIC LINEAR-SYSTEMS ON MULTIPROCESSORS
    KAMATH, C
    SAMEH, A
    [J]. PARALLEL COMPUTING, 1989, 9 (03) : 291 - 312