Dynamics and Control of a Vibrating System with Hyperchaotic Behavior Using an Electronic Circuit Implementation

被引:3
作者
Daum, Hilson H. [1 ,3 ]
Tusset, Angelo M. [2 ]
Ribeiro, Mauricio A. [2 ]
Balthazar, Jose M. [2 ,3 ]
Bueno, Atila M. [4 ]
Litak, Grzegorz [5 ]
机构
[1] UTFPR, Ind Maintenance Dept, Av Profa Laura Pacheco Bastos 800, BR-85053525 Guarapuava, Parana, Brazil
[2] UTFPR, Eletron Dept, Rua Doutor Washington Subtil Chueire 330, BR-84017220 Ponta Grossa, Parana, Brazil
[3] Sao Paulo State Univ, UNESP, Bauru, SP, Brazil
[4] Sao Paulo State Univ, Inst Sci & Technol, Sorocaba, SP, Brazil
[5] Lublin Univ Technol, Dept Appl Mech, Lublin, Poland
关键词
Nonlinear dynamics; DSP; OLFC control; Synchronization; CHAOTIC MOTION; SYNCHRONIZATION; SUPPRESSION;
D O I
10.1007/s13538-022-01117-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, an electronic circuit based on Macek equations was developed in which the phenomenon of hyperchaos was observed. Synchronization of signals was applied using the technique optimal linear feedback control (OLFC) and embedded in digital signal processor (DSP), with the circuit with hyperchaotic behavior as a master system and a periodic slave system embedded in the DSP along with the applied control technique. Within the context presented, it was possible to carry out the synchronization in phase between the systems, i.e., taking the system with periodic behavior to hyperchaos.
引用
收藏
页数:9
相关论文
共 30 条
  • [1] Balthazar J.M., 2014, MECCANICA
  • [2] Microcantilever chaotic motion suppression in tapping mode atomic force microscope
    Balthazar, Jose Manoel
    Tusset, Angelo Marcelo
    Thomaz de Souza, Silvio Luiz
    Bueno, Atila Madureira
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2013, 227 (08) : 1730 - 1741
  • [3] Dam H.H, 2021, THESIS UNESP FEB BAU
  • [4] Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
    Daum, Hilson H.
    Tusset, Angelo M.
    Ribeiro, Mauricio A.
    Litak, Grzegorz
    Bueno, Atila M.
    Balthazar, Jose M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (18-20) : 3457 - 3467
  • [5] Dynamic Analysis and Synchronization for a System with Hyperchaotic Behavior
    Daum, Hilson H.
    Rocha, Rodrigo T.
    Balthazar, Jose M.
    Tusset, Angelo M.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (05) : 1333 - 1345
  • [6] Event-triggered synchronization of discrete-time neural networks: A switching approach
    Ding, Sanbo
    Wang, Zhanshan
    [J]. NEURAL NETWORKS, 2020, 125 : 31 - 40
  • [7] The effect of fractionality nature in differences between computer simulation and experimental results of a chaotic circuit
    Faraji, Salman
    Tavazoei, Mohammad Saleh
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06): : 836 - 844
  • [8] ANALOGY BETWEEN HIGHER INSTABILITIES IN FLUIDS AND LASERS
    HAKEN, H
    [J]. PHYSICS LETTERS A, 1975, A 53 (01) : 77 - 78
  • [9] Kirk DE, 2004, OPTIMAL CONTROL THEO
  • [10] Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit
    Lai, Qiang
    Wan, Zhiqiang
    Kuate, Paul Didier Kamdem
    Fotsin, Hilaire
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 89