Differentiability of multiplicative processes related to branching random walks

被引:7
作者
Barral, J [1 ]
机构
[1] Univ Paris Sud, Equipe Anal Harmon, CNRS, URA 757, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2000年 / 36卷 / 04期
关键词
branching random walks; multiplicative cascades; martingales; functional equations;
D O I
10.1016/S0246-0203(00)00125-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A family of one-dimensional branching random walks indexed by an interval define a martingale taking values in the space of continuous functions. We propose a new approach to study the differentiability of the limit of this martingale. Under suitable conditions, this differentiability is obtained by assuming that the functions defining the martingale are differentiable only once; there is no loss of regularity. In this sense there is a progress with respect to the corresponding result of Biggins (1991). (C) 2000 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1967, MARKOV PROCESSES POT
[2]   UNIFORM-CONVERGENCE OF MARTINGALES IN THE BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
ANNALS OF PROBABILITY, 1992, 20 (01) :137-151
[3]   GROWTH-RATES IN THE BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (01) :17-34
[4]   MARTINGALE CONVERGENCE IN BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (01) :25-37
[5]  
BIGGINS JD, 1991, SELECTED PROC SHEFFI, P159, DOI DOI 10.1214/LNMS/1215459294
[6]   FIXED-POINTS OF THE SMOOTHING TRANSFORMATION [J].
DURRETT, R ;
LIGGETT, TM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (03) :275-301
[7]  
JOFFE A, 1973, CR HEBD ACAD SCI, V278, P963
[8]   CERTAIN MARTINGALES OF MANDELBROT,B [J].
KAHANE, JP ;
PEYRIERE, J .
ADVANCES IN MATHEMATICS, 1976, 22 (02) :131-145
[9]   1ST BIRTH PROBLEM FOR AN AGE-DEPENDENT BRANCHING PROCESS [J].
KINGMAN, JFC .
ANNALS OF PROBABILITY, 1975, 3 (05) :790-801
[10]  
LIU Q, 1997, SELF SIMILAR CASCADE