Magnetoelectricity of Chiral Micromagnetic Structures

被引:4
作者
Pyatakov, A. P. [1 ]
Gareev, T. T. [1 ]
Kaminskiy, A. S. [1 ]
Antipin, K. S. [1 ]
Nikolaeva, E. P. [1 ]
Kulikova, D. P. [1 ]
Sergeev, A. S. [1 ]
Nikolaev, A. V. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[2] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bld 1, Moscow 121205, Russia
来源
CHIRALITY, MAGNETISM AND MAGNETOELECTRICITY: SEPARATE PHENOMENA AND JOINT EFFECTS IN METAMATERIAL STRUCTURES | 2021年 / 138卷
基金
俄罗斯基础研究基金会;
关键词
ELECTRIC-FIELD CONTROL; IRON-GARNET FILMS; DOMAIN-WALLS; LINES; MULTIFERROICS; POLARIZATION; NUCLEATION; ANISOTROPY; DRIVEN;
D O I
10.1007/978-3-030-62844-4_6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The concept of chirality has profound implications throughout science, from elementary particle physics to biology. In this review, we will refer to chirality as a rotational sense of spin structures such as spin cycloid in spiral magnets, micromagnetic structure in curved magnetic film, twisted spin space of 2D electron gas in an ultrathin magnetic metal film, and micromagnetic structures observed in iron garnet samples. It will be shown that chirality plays the key role in magnetoelectric phenomena observed in iron garnet films: the electric field-induced generation, motion and annihilation of magnetic topological defects such as magnetic bubble domains, domain walls and vertical Bloch lines. As a new degree of freedom that can be controlled by electric and magnetic field, the chirality is an important issue for spintronic applications.
引用
收藏
页码:127 / 146
页数:20
相关论文
共 50 条
[21]   Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy: Static structures [J].
V. V. Zverev ;
B. N. Filippov .
The Physics of Metals and Metallography, 2013, 114 :108-115
[22]   Landau theory of domain wall magnetoelectricity [J].
Daraktchiev, Maren ;
Catalan, Gustau ;
Scott, James F. .
PHYSICAL REVIEW B, 2010, 81 (22)
[23]   Production of Organizational Chiral Structures by Design [J].
Sulkanen, Audrey R. ;
Wang, Minyuan ;
Swartz, Logan A. ;
Sung, Jaeuk ;
Sun, Gang ;
Moore, Jeffrey S. ;
Sottos, Nancy R. ;
Liu, Gang-Yu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (02) :824-831
[24]   3-D Simulations of Micromagnetic Transition Structures in Vortex Asymmetric Domain Walls [J].
Zverev, V. V. ;
Dubovik, M. N. ;
Filippov, B. N. .
TRENDS IN MAGNETISM: NANOMAGNETISM, 2014, 215 :421-426
[25]   Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications [J].
Masell, Jan ;
Everschor-Sitte, Karin .
CHIRALITY, MAGNETISM AND MAGNETOELECTRICITY: SEPARATE PHENOMENA AND JOINT EFFECTS IN METAMATERIAL STRUCTURES, 2021, 138 :147-181
[26]   Polarization Faticons: Chiral Localized Structures in Self-Defocusing Kerr Resonators [J].
Lucas, Erwan ;
Xu, Gang ;
Wang, Pengxiang ;
Oppo, Gian-Luca ;
Hill, Lewis ;
Del'Haye, Pascal ;
Kibler, Bertrand ;
Xu, Yiqing ;
Murdoch, Stuart G. ;
Erkintalo, Miro ;
Coen, Stephane ;
Fatome, Julien .
PHYSICAL REVIEW LETTERS, 2025, 135 (06)
[27]   Giant electroresistance and tunable magnetoelectricity in a multiferroic junction [J].
Ricci, Francesco ;
Filippetti, Alessio ;
Fiorentini, Vincenzo .
PHYSICAL REVIEW B, 2013, 88 (23)
[28]   Out-of-plane ferroelectricity and robust magnetoelectricity in quasi-two-dimensional materials [J].
Lu, Xue-Zeng ;
Zhang, Hui-Min ;
Zhou, Ying ;
Zhu, Tong ;
Xiang, Hongjun ;
Dong, Shuai ;
Kageyama, Hiroshi ;
Rondinelli, James M. .
SCIENCE ADVANCES, 2023, 9 (47)
[29]   Distorted Monolayer ReS2 with Low-Magnetic-Field Controlled Magnetoelectricity [J].
Zhang, Jinlei ;
Wu, Shuyi ;
Shan, Yun ;
Guo, JunHong ;
Yan, Shuo ;
Xiao, Shuyu ;
Yang, Chunbing ;
Shen, Jiancang ;
Chen, Jian ;
Liu, Lizhe ;
Wu, Xinglong .
ACS NANO, 2019, 13 (02) :2334-2340
[30]   Hysteresis magnetoresistance and micromagnetic modeling of Ni microbelts [J].
Liao, Zhi-Min ;
Lu, Yi ;
Zhang, Hong-Zhou ;
Yu, Da-Peng .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (15) :2231-2234