Transient anomalous diffusion of tracer particles in soft matter

被引:47
|
作者
McKinley, Scott A. [3 ]
Yao, Lingxing [4 ]
Forest, M. Gregory [1 ,2 ]
机构
[1] Univ N Carolina, Dept Math, Inst Adv Mat, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biomed Engn, Inst Adv Mat, Chapel Hill, NC 27599 USA
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
[4] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
TRANSPORT; DYNAMICS;
D O I
10.1122/1.3238546
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper is motivated by experiments in which time series of tracer particles in viscoelastic liquids are recorded using advanced microscopy. The experiments seek to infer either viscoelastic properties of the sample [Mason and Weitz, Phys. Rev. Lett. 74, 1250-1253 (1995)] or diffusive properties of the specific tracer particle in the host medium [Suh et al., Adv. Drug Delivery Rev. 57, 63-78 (2005); Matsui et al., Proc. Natl. Acad. Sci. U. S. A. 103, 18131-18136 (2006); Lai et al., Proc. Natl. Acad. Sci. U. S. A. 104, 1482-1487 (2007); Fricks et al., SIAM J. Appl. Math. 69, 1277-1308 (2009)]. Our focus is the latter. Experimentalists often fit data to transient anomalous diffusion: a sub-diffusive power law scaling (t(v), with 0 < v < 1) of mean-squared displacement (MSD) over a finite time interval, with longtime viscous scaling (t(1)). The time scales of sub-diffusion and exponents v are observed to vary with particle size, particle surface chemistry, and viscoelastic properties of the host material. Until now, explicit models for transient sub-diffusive MSD scaling behavior [Doi and Edwards, The Theory of Polymer Physics (Oxford University Press, New York, 1986); Kremer and Grest, J. Chem. Phys. 92, 5057-5086 (1990); Rubinstein and Colby, Polymer Physics (Oxford University Press, New York, 2003)] are limited to precisely three exponents: monomer diffusion in Rouse chain melts (t(1/2)), in Zimm chain solutions (t(2/3)), and in reptating chains (t(1/4)). In this paper, we present an explicit parametrized family of stochastic processes (generalized Langevin equations with prescribed memory kernels) and derive their closed-form solutions which (1) span the complete range of transient sub-diffusive behavior and (2) possess the flexibility to tune both the time window of sub-diffusive scaling and the power law exponent v. These results establish a robust family of sub-diffusive models, for which the inverse problem of parameter inference from experimental data [Fricks et al., SIAM J. Appl. Math. 69, 1277-1308 (2009)] remains to be developed. (C) 2009 The Society of Rheology. [DOI: 10.1122/1.3238546]
引用
收藏
页码:1487 / 1506
页数:20
相关论文
共 50 条
  • [31] Anomalous Diffusion of Deformable Particles in a Honeycomb Network
    Shen, Zaiyi
    Plouraboue, Franck
    Lintuvuori, Juho S.
    Zhang, Hengdi
    Abbasi, Mehdi
    Misbah, Chaouqi
    PHYSICAL REVIEW LETTERS, 2023, 130 (01)
  • [32] Enhanced diffusion of tracer particles in dilute bacterial suspensions
    Morozov, Alexander
    Marenduzzo, Davide
    SOFT MATTER, 2014, 10 (16) : 2748 - 2758
  • [33] Anomalous diffusion of inertial, weakly damped particles
    Friedrich, R.
    Jenko, F.
    Baule, A.
    Eule, S.
    PHYSICAL REVIEW LETTERS, 2006, 96 (23)
  • [34] Universal anomalous diffusion of weakly damped particles
    Bezuglyy, V.
    Wilkinson, M.
    Mehlig, B.
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [35] Anomalous diffusion of particles with inertia in external Potentials
    Eule, S.
    Friedrich, R.
    Jenko, F.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (45): : 13041 - 13046
  • [36] Anomalous Diffusion of Driven Particles in Supercooled Liquids
    Schroer, Carsten F. E.
    Heuer, Andreas
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [37] Transient Anomalous Diffusion in Run-and-Tumble Dynamics
    Shaebani, M. Reza
    Rieger, Heiko
    FRONTIERS IN PHYSICS, 2019, 7
  • [38] Anomalous diffusion process of transient radicals in solution.
    Terazima, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U299 - U299
  • [39] Transient anomalous diffusion with Prabhakar-type memory
    Stanislavsky, Aleksander
    Weron, Aleksander
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (04):
  • [40] Transient anomalous diffusion in heterogeneous media with stochastic resetting
    Lenzi, M. K.
    Lenzi, E. K.
    Guilherme, L. M. S.
    Evangelista, L. R.
    Ribeiro, H. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 588