Multimodal 2D, 2.5D & 3D face verification

被引:22
|
作者
Conde, Cristina [1 ]
Serrano, Angel [1 ]
Cabello, Enrique [1 ]
机构
[1] Univ Rey Juan Carlos, Face Recognit & Artificial Vis Grp, C Tulipan,s-n,Mostoles, E-28933 Madrid, Spain
来源
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS | 2006年
关键词
biometrics; pattern recognition; image processing;
D O I
10.1109/ICIP.2006.312863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A multimodal face verification process is presented for standard 2D color images, 2.5D range images and 3D meshes. A normalization in orientation and position is essential for 2.5D and 3D images to obtain a corrected frontal image. This is achieved using the spin images of the nose tip and both eyes, which feed an SVM classifier. First, a traditional Principal Component Analysis followed by an SVM classifier are applied to both 2D and 2.5D images. Second, an Iterative Closest Point algorithm is used to match 3D meshes. In all cases, the equal error rate is computed for different kinds of images in the training and test phases. In general, 2.5D range images show the best results (0.1% EER for frontal images). A special improvement in success rate for turned faces has been obtained for normalized 2.5D and 3D images compared to standard 2D images.
引用
收藏
页码:2061 / +
页数:2
相关论文
共 50 条
  • [21] Correlations for intensity (2D) and range (3D) image recognition
    Ferreira, Carlos
    Garcia, Javier
    Garcia-Martinez, Pascuala
    Arsenault, Henri H.
    Esteve-Taboada, Jose J.
    Valles, Jose J.
    OPTICA PURA Y APLICADA, 2005, 38 (02): : 21 - 33
  • [22] 2D and 3D curve modeling - multidimensional data recovery
    Jakobczak, Dariusz Jacek
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 64 : 208 - 212
  • [23] 2D/3D image analysis as a tool for tissue engineering
    Martin, I
    Toso, C
    Beltrame, F
    Diaspro, A
    Fato, M
    Facchini, A
    Marcacci, M
    DePasquale, V
    Strocchi, R
    Zaffagnini, S
    MINERVA BIOTECNOLOGICA, 1997, 9 (01) : 11 - 16
  • [24] Touchless Fingerprint Biometrics: A Survey on 2D and 3D Technologies
    Labati, Ruggero Donida
    Genovese, Angelo
    Piuri, Vincenzo
    Scotti, Fabio
    JOURNAL OF INTERNET TECHNOLOGY, 2014, 15 (03): : 325 - 332
  • [25] Ear recognition in 3D using 2D curvilinear features
    Ganapathi, Iyyakutti Iyappan
    Prakash, Surya
    Dave, Ishan Rajendra
    Joshi, Piyush
    Ali, Syed Sadaf
    Shrivastava, Akhilesh Mohan
    IET BIOMETRICS, 2018, 7 (06) : 519 - 529
  • [26] Review on 2D and 3D MRI Image Segmentation Techniques
    Shirly, S.
    Ramesh, K.
    CURRENT MEDICAL IMAGING REVIEWS, 2019, 15 (02) : 150 - 160
  • [27] On 2.5D Surface Reconstruction of Cell Cultures
    Smith, W. A.
    Lam, K. P.
    Collins, D. J.
    Richardson, J. B.
    2013 8TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA), 2013, : 218 - +
  • [28] A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition
    Bowyer, KW
    Chang, K
    Flynn, P
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2006, 101 (01) : 1 - 15
  • [29] 3D interfractional patient position verification using 2D-3D registration of orthogonal images
    Jans, H. -S.
    Syme, A. M.
    Rathee, S.
    Fallone, B. G.
    MEDICAL PHYSICS, 2006, 33 (05) : 1420 - 1439
  • [30] Converting 2D Image into Sequence of Curves on 3D Flat Model
    Suciati, Nanik
    Harada, Koichi
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT, VOL 1, 2009, : 397 - 401