A new formulation of the Stokes problem in a cylinder, and its spectral discretization

被引:3
作者
Abdellatif, N
Bernardi, C
机构
[1] Ecole Natl Sci Informat, Manouba 2010, Tunisia
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Paris 06, F-75252 Paris 05, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2004年 / 38卷 / 05期
关键词
Stokes problem; spectral methods; axisymmetric geometries;
D O I
10.1051/m2an:2004039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a new formulation of the Stokes equations in three-dimensional axisymmetric geometries, relying on Fourier expansion with respect to the angular variable: the problem for each Fourier coefficient is two-dimensional and has six scalar unknowns, corresponding to the vector potential and the vorticity. A spectral discretization is built on this formulation, which leads to an exactly divergence-free discrete velocity. We prove optimal error estimates.
引用
收藏
页码:781 / 810
页数:30
相关论文
共 17 条
  • [1] A mixed stream-function and vorticity formulation for axisymmetric Navier-Stokes equations
    Abdellatif, N
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (01) : 61 - 83
  • [2] ABDELLATIF N, 1997, THESIS U P M CURIE P
  • [3] A mixed convergent formulation for the three-dimensional Stokes equations
    Amara, M
    Barucq, H
    Duloué, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10): : 935 - 938
  • [4] AMARA M, 2001, ACT 6 JOURN ZAR PAU, P61
  • [5] Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
  • [6] 2-B
  • [7] Ben Belgacem F, 1999, MATH COMPUT, V68, P1497, DOI 10.1090/S0025-5718-99-01086-8
  • [8] MIXED SPECTRAL ELEMENT APPROXIMATION OF THE NAVIER-STOKES EQUATIONS IN THE STREAM-FUNCTION AND VORTICITY-FORMULATION
    BERNARDI, C
    GIRAULT, V
    MADAY, Y
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (04) : 565 - 608
  • [9] BERNARDI C, 1994, LECT NOTES PURE APPL, V167, P27
  • [10] BERNARDI C, 1999, SER APPL MATH, V3