Self-Assembled Sn Nanocrystals as the Floating Gate of Nonvolatile Flash Memory

被引:11
作者
Rathore, Jaswant S. [1 ]
Fandan, Rajveer [2 ,3 ]
Srivastava, Shalini [2 ]
Khiangte, Krista R. [1 ]
Das, Sudipta [1 ,2 ]
Ganguly, Udayan [2 ]
Laha, Apurba [2 ]
Mahapatra, Suddhasatta [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, Maharashtra, India
[3] Univ Politecn Madrid, Escuela Tecn Super Ingenieros Telecomunicac, E-28040 Madrid, Spain
关键词
nonvolatile memory; tin nanocrystals; self-assembly; molecular beam epitaxy; CMOS-compatible; ATOMIC LAYER DEPOSITION; DEVICES; SILICON; 2-BIT; OXIDE;
D O I
10.1021/acsaelm.9b00379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As demands for data storage capability continue to increase, nonvolatile memory devices with discrete nanocrystals as the charge-storage nodes are being extensively investigated. To alleviate scaling issues, use of metal-nanocrystal-based ultrahigh-bit-density memory devices, capable of multilevel cell operations, have been proposed and studied widely. Here we propose a nonvolatile floating gate memory, utilizing nanocrystals of the group-IV metal, beta-Tin (beta-Sn), which spontaneously self-assemble on a variety of high-k dielectric oxides and silicon during molecular beam epitaxy at low temperatures. In metal-oxide-semiconductor memory devices, we demonstrate a large memory window (similar to 3 V) at moderate operating voltages of +/- 6 V and investigate the retention and endurance characteristics. The observed results are promising for realization of memory devices, compatible with the silicon complementary-metal-oxide-semiconductor technology.
引用
收藏
页码:1852 / 1858
页数:13
相关论文
共 44 条
[1]   Multilayer Ge nanocrystals embedded within Al2O3 matrix for high performance floating gate memory devices [J].
Bar, R. ;
Aluguri, R. ;
Manna, S. ;
Ghosh, A. ;
Satyam, P. V. ;
Ray, S. K. .
APPLIED PHYSICS LETTERS, 2015, 107 (09)
[2]   Developments in nanocrystal memory [J].
Chang, Ting-Chang ;
Jian, Fu-Yen ;
Chen, Shih-Cheng ;
Tsai, Yu-Ting .
MATERIALS TODAY, 2011, 14 (12) :608-615
[3]   Formation and nonvolatile memory characteristics of W nanocrystals by in-situ steam generation oxidation [J].
Chen, Shih-Cheng ;
Chang, Ting-Chang ;
Hsieh, Chieh-Ming ;
Li, Hung-Wei ;
Sze, S. M. ;
Nien, Wen-Ping ;
Chan, Chia-Wei ;
Yeh , Fon-Shan ;
Tai, Ya-Hsiang .
THIN SOLID FILMS, 2010, 519 (05) :1677-1680
[4]   A novel, aerosol-nanocrystal floating-gate device for non-volatile memory applications [J].
De Blauwe, J ;
Ostraat, M ;
Green, ML ;
Weber, G ;
Sorsch, T ;
Kerber, A ;
Klemens, F ;
Cirelli, R ;
Ferry, E ;
Grazul, JL ;
Baumann, F ;
Kim, Y ;
Mansfield, W ;
Bude, J ;
Lee, JTC ;
Hillenius, SJ ;
Flagan, RC ;
Atwater, HA .
INTERNATIONAL ELECTRON DEVICES MEETING 2000, TECHNICAL DIGEST, 2000, :683-686
[5]   NROM: A novel localized trapping, 2-bit nonvolatile memory cell [J].
Eitan, B ;
Pavan, P ;
Bloom, I ;
Aloni, E ;
Frommer, A ;
Finzi, D .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (11) :543-545
[6]   Directional magnetization effects in magnetic circular dichroism spectra of Fe -: art. no. 064439 [J].
Höchst, H ;
Rioux, D ;
Zhao, D ;
Huber, DL .
PHYSICAL REVIEW B, 2002, 65 (06) :644391-644396
[7]   Metal Nanodot Memory by Self-Assembled Block Copolymer Lift-Off [J].
Hong, Augustin J. ;
Liu, Chi-Chun ;
Wang, Yong ;
Kim, Jiyoung ;
Xiu, Faxian ;
Ji, Shengxiang ;
Zou, Jin ;
Nealey, Paul F. ;
Wang, Kang L. .
NANO LETTERS, 2010, 10 (01) :224-229
[8]   High Density Ni Nanocrystals Formed by Coevaporating Ni and SiO2 Pellets for the Nonvolatile Memory Device Application [J].
Hu, Chih-Wei ;
Chang, Ting-Chang ;
Tu, Chun-Hao ;
Huang, Yu-Hao ;
Lin, Chao-Cheng ;
Chen, Min-Chen ;
Huang, Fon-Shan ;
Sze, Simon M. ;
Tseng, Tseung-Yuen .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (03) :H49-H51
[9]   A FLOATING GATE AND ITS APPLICATION TO MEMORY DEVICES [J].
KAHNG, D ;
SZE, SM .
BELL SYSTEM TECHNICAL JOURNAL, 1967, 46 (06) :1288-+
[10]   Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing [J].
Kapetanakis, E ;
Normand, P ;
Tsoukalas, D ;
Beltsios, K ;
Stoemenos, J ;
Zhang, S ;
van den Berg, J .
APPLIED PHYSICS LETTERS, 2000, 77 (21) :3450-3452