Global Least Squares for Time-Domain System Identification of State-Space Models

被引:0
|
作者
Harker, Matthew [1 ]
Rath, Gerhard [1 ]
机构
[1] Univ Leoben, Inst Automat, Leoben, Austria
来源
2018 7TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO) | 2018年
关键词
-system identification; output error; global leastsquares; variable projection method;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This This paper describes a new method for identifying the system parameters of a dynamic system in state-space form by minimizing the least-squares error of the measured system output. The variable projection method is used to eliminate the necessity of estimating the system states, and reduce the system identification cost function to a function of only the system parameters. The method is verified using real data of the angle of a pendulum mounted on a trolley with position control.
引用
收藏
页码:590 / 595
页数:6
相关论文
共 50 条
  • [31] Constrained state-space system identification with application to structural dynamics
    Sjoevall, Per
    McKelvey, Tomas
    Abrahamsson, Thomas
    AUTOMATICA, 2006, 42 (09) : 1539 - 1546
  • [32] An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
    Gonzalez, Rodrigo A.
    Cedeno, Angel L.
    Coronel, Maria
    Aguero, Juan C.
    Rojas, Cristian R.
    IFAC PAPERSONLINE, 2023, 56 (02): : 4204 - 4209
  • [34] Identification of Time-Delay Systems: a State-Space Realization Approach
    Lima, Rafael B. C.
    Barros, Pericles R.
    IFAC PAPERSONLINE, 2015, 48 (08): : 254 - 259
  • [35] Direct State-Space Models for Time-Varying Sensor Networks
    Matarazzo, Thomas J.
    Pakzad, Shamim N.
    STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 3066 - 3072
  • [36] State-Space Recurrent Fuzzy Neural Networks for Nonlinear System Identification
    Wen Yu
    Neural Processing Letters, 2005, 22 : 391 - 404
  • [37] State-space recurrent fuzzy neural networks for nonlinear system identification
    Yu, W
    NEURAL PROCESSING LETTERS, 2005, 22 (03) : 391 - 404
  • [38] Shooting methods for identification of nonlinear state-space grey-box models
    Retzler, Andras
    Swevers, Jan
    Gillis, Joris
    Kollar, Zsolt
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON ADVANCED MOTION CONTROL (AMC), 2022, : 207 - 212
  • [39] Time-domain versus frequency-domain system identification of lithium-ion batteries using fractional models
    Adel, Abderrahmane
    Malti, Rachid
    Vinassa, Jean-Michel
    Briat, Olivier
    IFAC PAPERSONLINE, 2024, 58 (15): : 109 - 114
  • [40] Traversing Time with Multi-Resolution Gaussian Process State-Space Models
    Longi, Krista
    Lindinger, Jakob
    Duennbier, Olaf
    Kandemir, Melih
    Klami, Arto
    Rakitsch, Barbara
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168