Global Least Squares for Time-Domain System Identification of State-Space Models

被引:0
|
作者
Harker, Matthew [1 ]
Rath, Gerhard [1 ]
机构
[1] Univ Leoben, Inst Automat, Leoben, Austria
来源
2018 7TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO) | 2018年
关键词
-system identification; output error; global leastsquares; variable projection method;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This This paper describes a new method for identifying the system parameters of a dynamic system in state-space form by minimizing the least-squares error of the measured system output. The variable projection method is used to eliminate the necessity of estimating the system states, and reduce the system identification cost function to a function of only the system parameters. The method is verified using real data of the angle of a pendulum mounted on a trolley with position control.
引用
收藏
页码:590 / 595
页数:6
相关论文
共 50 条
  • [21] Stochastic theory of continuous-time state-space identification
    Johansson, R
    Verhaegen, M
    Chou, CT
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) : 41 - 51
  • [22] A local identification method for linear parameter-varying systems based on interpolation of state-space matrices and least-squares approximation
    Ferranti, Francesco
    Rolain, Yves
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 82 : 478 - 489
  • [23] Genetic least squares for system identification
    K. Warwick
    Y. -H. Kang
    R. J. Mitchell
    Soft Computing, 1999, 3 (4) : 200 - 205
  • [24] Generalization of a total least squares problem in frequency-domain system identification
    Balogh, L
    Kollár, I
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (06) : 1353 - 1357
  • [25] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [26] A linear regression approach to state-space subspace system identification
    Jansson, M
    Wahlberg, B
    SIGNAL PROCESSING, 1996, 52 (02) : 103 - 129
  • [27] Hybrid evolutionary identification of output-error state-space models
    Dertimanis, Vasilis K.
    Chatzi, Eleni N.
    Spiridonakos, Minas D.
    STRUCTURAL MONITORING AND MAINTENANCE, 2014, 1 (04): : 427 - 449
  • [28] Identification of physically realistic state-space models for accurate component synthesis
    Gibanica, Mladen
    Abrahamsson, Thomas J. S.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145
  • [29] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [30] Constrained Subspace Method for the Identification of Structured State-Space Models (COSMOS)
    Yu, Chengpu
    Ljung, Lennart
    Wills, Adrian
    Verhaegen, Michel
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4201 - 4214