Global Least Squares for Time-Domain System Identification of State-Space Models

被引:0
|
作者
Harker, Matthew [1 ]
Rath, Gerhard [1 ]
机构
[1] Univ Leoben, Inst Automat, Leoben, Austria
来源
2018 7TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO) | 2018年
关键词
-system identification; output error; global leastsquares; variable projection method;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This This paper describes a new method for identifying the system parameters of a dynamic system in state-space form by minimizing the least-squares error of the measured system output. The variable projection method is used to eliminate the necessity of estimating the system states, and reduce the system identification cost function to a function of only the system parameters. The method is verified using real data of the angle of a pendulum mounted on a trolley with position control.
引用
收藏
页码:590 / 595
页数:6
相关论文
共 50 条
  • [1] System identification of nonlinear state-space models
    Schon, Thomas B.
    Wills, Adrian
    Ninness, Brett
    AUTOMATICA, 2011, 47 (01) : 39 - 49
  • [2] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [3] Nuclear Norm Subspace Identification Of Continuous Time State-Space Models
    Varanasi, Santhosh Kumar
    Jampana, Phanindra
    IFAC PAPERSONLINE, 2018, 51 (01): : 530 - 535
  • [4] Basic frequency and time domain least squares-methods for system identification
    Subramanian, Ashish
    Pierre, John W.
    2006 38TH ANNUAL NORTH AMERICAN POWER SYMPOSIUM, NAPS-2006 PROCEEDINGS, 2006, : 311 - +
  • [5] Identification of MIMO switched state-space models
    Bako, Laurent
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 71 - 76
  • [6] An integral architecture for identification of continuous-time state-space LPV models
    Mejari, Manas
    Mavkov, Bojan
    Forgione, Marco
    Piga, Dario
    IFAC PAPERSONLINE, 2021, 54 (08): : 7 - 12
  • [7] System Identification of Bilinear State-space Models by Modified Gradient Search Method
    Zhong Lusheng
    Fan Xiaoping
    Yang Hui
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1282 - 1286
  • [8] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [9] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [10] State-space Identification in Frequency Domain from Missing Measurements
    Tang, Wei
    Zheng, Xiaoke
    Wu, Jian
    Wang, Libo
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 6933 - 6939