Decoding perceptual thresholds from MEG/EEG

被引:0
作者
Bekhti, Yousra [1 ,2 ,5 ]
Zilber, Nicolas [1 ,5 ]
Pedregosa, Fabian [3 ,5 ]
Ciuciu, Philippe [3 ,5 ]
van Wassenhove, Virginie [1 ,4 ,5 ]
Gramfort, Alexandre [2 ,5 ]
机构
[1] INSERM, U992, Neurospin Bat 145, F-91191 Gif Sur Yvette, France
[2] Telecom ParisTech, Inst Mines Telecom, CNRS LTCI, Paris, France
[3] INRIA Saclay Ile de France, Parietal Team, Palaiseau, France
[4] Univ Paris Sud, Cognit Neuroimaging Unit, F-91191 Gif Sur Yvette, France
[5] CEA, DSV I2BM, NeuroSpin Ctr, F-91191 Gif Sur Yvette, France
来源
2014 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING | 2014年
关键词
MOVEMENT DIRECTION; MEG; EEG;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetoencephalography (MEG) can map brain activity by recording the electromagnetic fields generated by the electrical currents in the brain during a perceptual or cognitive task. This technique offers a very high temporal resolution that allows noninvasive brain exploration at a millisecond (ms) time scale. Decoding, a.k.a. brain reading, consists in predicting from neuroimaging data the subject's behavior and/or the parameters of the perceived stimuli. This is facilitated by the use of supervised learning techniques. In this work we consider the problem of decoding a target variable with ordered values. This target reflects the use of a parametric experimental design in which a parameter of the stimulus is continuously modulated during the experiment. The decoding step is performed by a Ridge regression. The evaluation metric, given the ordinal nature of the target is performed by a ranking metric. On a visual paradigm consisting of random dot kinematograms with 7 coherence levels recorded on 36 subjects we show that one can predict the perceptual thresholds of the subjects from the MEG data. Results are obtained in sensor space and for source estimates in relevant regions of interests (MT, pSTS, mSTS, VLPFC).
引用
收藏
页数:4
相关论文
共 14 条
[1]  
Cichy R. M., 2014, NATURE NEUROSCIENCE
[2]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67
[3]  
Doyle Orla M., 2013, NEUROIMAGE
[4]  
Fan Y, 2011, LECT NOTES COMPUT SC, V7012, P44, DOI 10.1007/978-3-642-24446-9_6
[5]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[6]   Magnetoencephalographic signals predict movement trajectory in space [J].
Georgopoulos, AP ;
Langheim, FJP ;
Leuthold, AC ;
Merkle, AN .
EXPERIMENTAL BRAIN RESEARCH, 2005, 167 (01) :132-135
[7]   MNE software for processing MEG and EEG data [J].
Gramfort, Alexandre ;
Luessi, Martin ;
Larson, Eric ;
Engemann, Denis A. ;
Strohmeier, Daniel ;
Brodbeck, Christian ;
Parkkonen, Lauri ;
Haemaelaeinen, Matti S. .
NEUROIMAGE, 2014, 86 :446-460
[8]   Two Distinct Dynamic Modes Subtend the Detection of Unexpected Sounds [J].
King, Jean-Remi ;
Gramfort, Alexandre ;
Schurger, Aaron ;
Naccache, Lionel ;
Dehaene, Stanislas .
PLOS ONE, 2014, 9 (01)
[9]  
Pedregosa F., 2012, PRNI 2012 2 INT WORK
[10]   Can cognitive processes be inferred from neuroimaging data? [J].
Poldrack, RA .
TRENDS IN COGNITIVE SCIENCES, 2006, 10 (02) :59-63