SEMI-AUTOMATIC GENERATION OF TIGHT BINARY MASKS AND NON-CONVEX ISOSURFACES FOR QUANTITATIVE ANALYSIS OF 3D BIOLOGICAL SAMPLES

被引:0
作者
Bhide, Sourabh [1 ,2 ]
Mikur, Ralf [3 ]
Leptin, Maria [4 ]
Stegmaier, Johannes [5 ]
机构
[1] European Mol Biol Lab, Directors Res Unit, Heidelberg, Germany
[2] Karlsruhe Inst Technol, Collaborat Joint PhD Degree EMBL & Heidelberg Uni, Fac Biosci, Karlsruhe, Germany
[3] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
[4] European Mol Biol Org, Heidelberg, Germany
[5] Rhein Westfal TH Aachen, Inst Imaging & Comp Vis, Aachen, Germany
来源
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2020年
关键词
3D+t Image Analysis; Segmentation; Tracking; Visualization; Developmental Biology; GUI;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Current in vivo microscopy allows us detailed spatiotemporal imaging (3D+t) of complete organisms and offers insights into their development on the cellular level. Even though the imaging speed and quality is steadily improving, fully-automated segmentation is often not accurate enough in low-signal image regions. This is particularly true while imaging large samples (100 mu m-1mm) and deep inside the specimen. Drosophila embryogenesis, widely used as a developmental paradigm, presents an example for such a challenge, especially where cell outlines need to imaged - a general challenge in other systems as well. To deal with the current bottleneck in analyzing quantitatively the 3D+t light-sheet microscopy images of Drosophila embryos, we developed a collection of semi-automatic open-source tools. The presented methods include a semi-automatic masking procedure, automatic projection of non-convex 3D isosurfaces to 2D representations as well as cell segmentation and tracking.
引用
收藏
页码:2820 / 2824
页数:5
相关论文
共 22 条
  • [1] Amat F, 2014, NAT METHODS, V11, P951, DOI [10.1038/nmeth.3036, 10.1038/NMETH.3036]
  • [2] Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
  • [3] Eschweiler D, 2019, I S BIOMED IMAGING, P223, DOI [10.1109/isbi.2019.8759242, 10.1109/ISBI.2019.8759242]
  • [4] Tissue cartography: compressing bio-image data by dimensional reduction
    Heemskerk, Idse
    Streichan, Sebastian J.
    [J]. NATURE METHODS, 2015, 12 (12) : 1139 - +
  • [5] Deep tissue two-photon microscopy
    Helmchen, F
    Denk, W
    [J]. NATURE METHODS, 2005, 2 (12) : 932 - 940
  • [6] Quantitative 4D analyses of epithelial folding during Drosophila gastrulation
    Khan, Zia
    Wang, Yu-Chiun
    Wieschaus, Eric F.
    Kaschube, Matthias
    [J]. DEVELOPMENT, 2014, 141 (14): : 2895 - 2900
  • [7] An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution
    Kobitski, Andrei Y.
    Otte, Jens C.
    Takamiya, Masanari
    Schaefer, Benjamin
    Mertes, Jonas
    Stegmaier, Johannes
    Rastegar, Sepand
    Rindone, Francesca
    Hartmann, Volker
    Stotzka, Rainer
    Garcia, Ariel
    van Wezel, Jos
    Mikut, Ralf
    Straehle, Uwe
    Nienhaus, G. Ulrich
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [8] Krzic U, 2012, NAT METHODS, V9, P730, DOI [10.1038/nmeth.2064, 10.1038/NMETH.2064]
  • [9] Luxendo, LUX IM PROC V2 9 2
  • [10] Mavrakis M, 2008, CURR PROTOC CELL BIO, V39, DOI DOI 10.1002/0471143030.CB0418-39