Kelvin probe force microscopy in liquid using electrochemical force microscopy

被引:37
|
作者
Collins, Liam [1 ,2 ]
Jesse, Stephen [3 ]
Kilpatrick, Jason I. [2 ]
Tselev, Alexander [3 ]
Okatan, M. Baris [3 ]
Kalinin, Sergei V. [3 ,4 ]
Rodriguez, Brian J. [1 ,2 ]
机构
[1] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland
[2] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA
来源
关键词
diffuse charge dynamics; double layer charging; electrochemical force microscopy; electrochemistry; Kelvin probe force microscopy; SURFACE; NANOSCALE; INTERFACES; DYNAMICS; WATER;
D O I
10.3762/bjnano.6.19
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid-liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias-and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample-and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid-liquid interface.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [41] Dual harmonic Kelvin probe force microscopy at the graphene-liquid interface
    Collins, Liam
    Kilpatrick, Jason I.
    Vlassiouk, Ivan V.
    Tselev, Alexander
    Weber, Stefan A. L.
    Jesse, Stephen
    Kalinin, Sergei V.
    Rodriguez, Brian J.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [42] Electrostatic force gradient signal:: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy
    Gil, A
    Colchero, J
    Gómez-Herrero, J
    Baró, AM
    NANOTECHNOLOGY, 2003, 14 (02) : 332 - 340
  • [43] Probing the surface electrical properties of clay minerals with electrostatic force microscopy and kelvin probe force microscopy
    Qin, Zonghua
    Nie, Xin
    Yu, Wenbin
    Yang, Shuguang
    Zhou, Zongke
    Yang, Shuqin
    Wan, Quan
    MATERIALS RESEARCH EXPRESS, 2024, 11 (02)
  • [44] Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination
    Jaafar, Miriam
    Iglesias-Freire, Oscar
    Serrano-Ramon, Luis
    Ricardo Ibarra, Manuel
    Maria de Teresa, Jose
    Asenjo, Agustina
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 : 552 - 560
  • [45] Scanning capacitance force microscopy and Kelvin probe force microscopy of nanostructures embedded in SiO2
    Tallarida, G
    Spiga, S
    Fanciulli, M
    SCANNING PROBE MICROSCOPY: CHARACTERIZATION, NANOFABRICATION AND DEVICE APPLICATION OF FUNCTIONAL MATERIALS, 2005, 186 : 405 - +
  • [46] Characterization of phases in duplex stainless steel by magnetic force microscopy/scanning kelvin probe force microscopy
    Sathirachinda, Namurata
    Gubner, Rolf
    Pan, Jinshan
    Kivisakk, Ulf
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (07) : C41 - C45
  • [47] Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements
    Behunin, R. O.
    Dalvit, D. A. R.
    Decca, R. S.
    Genet, C.
    Jung, I. W.
    Lambrecht, A.
    Liscio, A.
    Lopez, D.
    Reynaud, S.
    Schnoering, G.
    Voisin, G.
    Zeng, Y.
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [48] Observing Electrochemical Reactions on Suspended Graphene: An Operando Kelvin Probe Force Microscopy Approach
    Khatun, Salma
    Cohen, Sidney R.
    Peled, Sa'ar Shor
    Rosenhek-Goldian, Irit
    Weatherup, Robert S.
    Eren, Baran
    ADVANCED MATERIALS INTERFACES, 2021, 8 (18)
  • [49] Probing CO on a rutile TiO2(110) surface using atomic force microscopy and Kelvin probe force microscopy
    Adachi, Yuuki
    Sugawara, Yasuhiro
    Li, Yan Jun
    NANO RESEARCH, 2022, 15 (03) : 1909 - 1915
  • [50] Probing CO on a rutile TiO2(110) surface using atomic force microscopy and Kelvin probe force microscopy
    Yuuki Adachi
    Yasuhiro Sugawara
    Yan Jun Li
    Nano Research, 2022, 15 : 1909 - 1915