Taub-NUT dynamics with a magnetic field

被引:10
作者
Jante, Rogelio
Schroers, Bernd J. [1 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Taub-NUT geometry; Dirac equation; Runge-Lenz vector; Dynamical symmetry; Landau levels; Gravitational instanton; MONOPOLES; DUALITY;
D O I
10.1016/j.geomphys.2016.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study classical and quantum dynamics on the Euclidean Taub-NUT geometry coupled to an abelian gauge field with self-dual curvature and show that, even though' Taub-NUT has neither bounded orbits nor quantum bound states, the magnetic binding via the gauge field produces both. The conserved Runge-Lenz vector of Taub-NUT dynamics survives, in a modified form, in the gauged model and allows for an essentially algebraic computation of classical trajectories and energies of quantum bound states. We also compute scattering cross sections and find a surprising electric-magnetic duality. Finally, we exhibit the dynamical symmetry behind the conserved Runge-Lenz and angular momentum vectors in terms of a twistorial formulation of phase space. (C) 2016 The Authors. Published by Elsevier B.V.
引用
收藏
页码:305 / 328
页数:24
相关论文
共 26 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [10.1007/978-1-4757-1693-1, DOI 10.1007/978-1-4757-1693-1]
[3]   Time evolution in a geometric model of a particle [J].
Atiyah, M. F. ;
Franchetti, G. ;
Schroers, B. J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02)
[4]   Geometric models of matter [J].
Atiyah, M. F. ;
Manton, N. S. ;
Schroers, B. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2141) :1252-1279
[5]  
BANDER M, 1966, REV MOD PHYS, V38, P330, DOI 10.1103/RevModPhys.38.330
[6]   THE DIRAC-EQUATION IN TAUB-NUT SPACE [J].
COMTET, A ;
HORVATHY, PA .
PHYSICS LETTERS B, 1995, 349 (1-2) :49-56
[7]   KEPLER-TYPE DYNAMICAL SYMMETRIES OF LONG-RANGE MONOPOLE INTERACTIONS [J].
CORDANI, B ;
FEHER, LG ;
HORVATHY, PA .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :202-211
[8]   Supersymmetric quantum mechanics of magnetic monopoles: A case study [J].
de Vries, Erik Jan ;
Schroers, Bernd J. .
NUCLEAR PHYSICS B, 2009, 815 (03) :368-403
[9]   A UNIFIED TREATMENT OF WIGNER DELTA-FUNCTIONS, SPIN-WEIGHTED SPHERICAL-HARMONICS, AND MONOPOLE HARMONICS [J].
DRAY, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (03) :781-792
[10]   DYNAMIC SYMMETRY OF MONOPOLE SCATTERING [J].
FEHER, LG ;
HORVATHY, PA .
PHYSICS LETTERS B, 1987, 183 (02) :182-186