Mitochondrial recombination increases with age in Podospora anserina

被引:16
作者
van Diepeningen, Anne D. [1 ]
Goedbloed, Daniel J. [1 ]
Slakhorst, S. Marijke [1 ]
Koopmanschap, A. Bertha [1 ]
Maas, Marc F. P. M. [1 ]
Hoekstra, Rolf F. [1 ]
Debets, Alfons J. M. [1 ]
机构
[1] Wageningen Univ, Genet Lab, NL-6708 PB Wageningen, Netherlands
关键词
Ageing; Mitochondrial recombination; Mitochondrial plasmids; Life span extension; Podospora anserina; GROUP-II INTRONS; LIFE-SPAN; EXCISION-AMPLIFICATION; SEXUAL REPRODUCTION; SEQUENCE-ANALYSIS; PLASMID PAL2-1; DNA-SEQUENCE; WILD-TYPE; SENESCENCE; SELECTION;
D O I
10.1016/j.mad.2010.03.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 68 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] [Anonymous], 1989, Molecular Cloning: A Laboratory
  • [3] Linkage disequilibrium and recombination in hominid mitochondrial DNA
    Awadalla, P
    Eyre-Walker, A
    Smith, JM
    [J]. SCIENCE, 1999, 286 (5449) : 2524 - 2525
  • [4] Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks
    Bacman, Sandra R.
    Williams, Sion L.
    Moraes, Carlos T.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (13) : 4218 - 4226
  • [5] Begel O, 1999, MOL CELL BIOL, V19, P4093
  • [6] Plasticity of the mitochondrial genome in Podospora. Polymorphism for 15 optional sequences: group-I, group-II introns, intronic ORFs and an intergenic region
    Belcour, L
    Rossignol, M
    Koll, F
    Sellem, CH
    Oldani, C
    [J]. CURRENT GENETICS, 1997, 31 (04) : 308 - 317
  • [7] MITOCHONDRIAL-DNA AMPLIFICATION IN SENESCENT CULTURES OF PODOSPORA-ANSERINA - VARIABILITY BETWEEN THE RETAINED, AMPLIFIED SEQUENCES
    BELCOUR, L
    BEGEL, O
    MOSSE, MO
    VIERNY, C
    [J]. CURRENT GENETICS, 1981, 3 (01) : 13 - 21
  • [8] Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control
    Bertrand, H
    [J]. ANNUAL REVIEW OF PHYTOPATHOLOGY, 2000, 38 : 397 - 422
  • [9] Selection arena in Aspergillus nidulans
    Bruggeman, J
    Debets, AJM
    Hoekstra, RF
    [J]. FUNGAL GENETICS AND BIOLOGY, 2004, 41 (02) : 181 - 188
  • [10] CHAO A, 1984, SCAND J STAT, V11, P265