Matrix polynomials with specified eigenvalues

被引:4
|
作者
Karow, Michael [1 ]
Mengi, Emre [2 ]
机构
[1] TU Berlin, Dept Math, D-10623 Berlin, Germany
[2] Koc Univ, Dept Math, TR-34450 Istanbul, Turkey
关键词
Matrix polynomial; Linearization; Singular values; Sylvester equation; Eigenvalue perturbation theory; MULTIPLE-EIGENVALUES; CRITICAL-POINTS; PSEUDOSPECTRA; DISTANCE; FORMULA;
D O I
10.1016/j.laa.2014.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work concerns the distance in the 2-norm from a given matrix polynomial to a nearest polynomial with a specified number of its eigenvalues at specified locations in the complex plane. Initially, we consider perturbations of the constant coefficient matrix only. A singular value optimization characterization is derived for the associated distance. We also consider the distance in the general setting, when all of the coefficient matrices are perturbed. In this general setting, we obtain a lower bound in terms of another singular value optimization problem. The singular value optimization problems derived facilitate the numerical computation of the distances. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:457 / 482
页数:26
相关论文
共 50 条
  • [21] FAST AND BACKWARD STABLE COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF MATRIX POLYNOMIALS
    Aurentz, Jared
    Mach, Thomas
    Robol, Leonardo
    Vandebril, Raf
    Watkins, David S.
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 313 - 347
  • [22] Bounds for the eigenvalues of monic matrix polynomials from numerical radius inequalities
    Jaradat, Abeer
    Kittaneh, Fuad
    ADVANCES IN OPERATOR THEORY, 2020, 5 (03) : 734 - 743
  • [23] Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike theorems
    Chu, EKW
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (02) : 551 - 573
  • [24] Bounds for the eigenvalues of monic matrix polynomials from numerical radius inequalities
    Abeer Jaradat
    Fuad Kittaneh
    Advances in Operator Theory, 2020, 5 : 734 - 743
  • [25] CONDITIONING AND BACKWARD ERRORS OF EIGENVALUES OF HOMOGENEOUS MATRIX POLYNOMIALS UNDER MOBIUS TRANSFORMATIONS
    Miguel Anguas, Luis
    Bueno, Maria Isabel
    Dopico, Froilan M.
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 767 - 805
  • [26] Generalized derivatives of eigenvalues of a symmetric matrix
    Stechlinski, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 (63-95) : 63 - 95
  • [27] Structured eigenvalue condition numbers and linearizations for matrix polynomials
    Adhikari, Bibhas
    Alam, Rafikul
    Kressner, Daniel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (09) : 2193 - 2221
  • [28] Symmetric linearizations for matrix polynomials
    Higham, Nicholas J.
    Mackey, D. Steven
    Mackey, Niloufer
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 143 - 159
  • [29] The conditioning of linearizations of matrix polynomials
    Higham, Nicholas J.
    Mackey, D. Steven
    Tisseur, Francoise
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 28 (04) : 1005 - 1028
  • [30] On pseudospectra of matrix polynomials and their boundaries
    Boulton, Lyonell
    Lancaster, Peter
    Psarrakos, Panayiotis
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 313 - 334