Hybrid Short-Term Wind Power Prediction Based on Markov Chain

被引:3
|
作者
Zhou, Liangsong [1 ]
Zhou, Xiaotian [2 ]
Liang, Hao [2 ]
Huang, Mutao [1 ]
Li, Yi [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB, Canada
[3] Univ Washington, Coll Engn, Seattle, WA USA
关键词
wind power prediction; combined model; Markov chain; chaotic time series; data-driven; NEURAL-NETWORK; SPEED;
D O I
10.3389/fenrg.2022.899692
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article proposes a combined prediction method based on the Markov chain to realize precise short-term wind power predictions. First, three chaotic models are proposed for the prediction of chaotic time series, which can master physical principles in wind power processes and guide long-term prediction. Then, considering a mechanism switching between different physical models via a Markov chain, a combined model is constructed. Finally, the industrial data from a Chinese wind farm were taken as a study case, and the results validated the feasibility and superiority of the proposed prediction method.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining
    Wang, Da
    Yang, Mao
    Zhang, Wei
    Ma, Chenglian
    Su, Xin
    APPLIED ENERGY, 2025, 380
  • [22] Short-term prediction of wind power using an improved kernel based optimized deep belief network
    Sarangi, Snigdha
    Dash, Pradipta Kishore
    Bisoi, Ranjeeta
    ENERGY CONVERSION AND MANAGEMENT, 2024, 316
  • [23] A hybrid method for short-term freeway travel time prediction based on wavelet neural network and Markov chain
    Yang, Hang
    Zou, Yajie
    Wang, Zhongyu
    Wu, Bing
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2018, 45 (02) : 77 - 86
  • [24] A hybrid technique for short-term wind speed prediction
    Hu, Jianming
    Wang, Jianzhou
    Ma, Kailiang
    ENERGY, 2015, 81 : 563 - 574
  • [25] Forecast of short-term wind power based on a novel hybrid method
    Wu, Dinghui
    Huang, Haibo
    Xiao, Ren
    Gao, Cong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2020, 234 (08) : 937 - 947
  • [26] Short-term wind power prediction based on kpca-kmpmr
    Wang X.
    Wang C.
    Chang Y.
    International Journal of Electrical Engineering, 2017, 24 (01): : 1 - 9
  • [27] Wind power short-term prediction based on digital twin technology
    Liu, Shu
    Frontiers in Energy Research, 2024, 12
  • [28] Short-term prediction of wind power based on BiLSTM-CNN-WGAN-GP
    Huang, Ling
    Li, Linxia
    Wei, Xiaoyuan
    Zhang, Dongsheng
    SOFT COMPUTING, 2022, 26 (20) : 10607 - 10621
  • [29] Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis
    Liao, Shengli
    Tian, Xudong
    Liu, Benxi
    Liu, Tian
    Su, Huaying
    Zhou, Binbin
    ENERGIES, 2022, 15 (17)
  • [30] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932