Hybrid Short-Term Wind Power Prediction Based on Markov Chain

被引:3
|
作者
Zhou, Liangsong [1 ]
Zhou, Xiaotian [2 ]
Liang, Hao [2 ]
Huang, Mutao [1 ]
Li, Yi [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB, Canada
[3] Univ Washington, Coll Engn, Seattle, WA USA
关键词
wind power prediction; combined model; Markov chain; chaotic time series; data-driven; NEURAL-NETWORK; SPEED;
D O I
10.3389/fenrg.2022.899692
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This article proposes a combined prediction method based on the Markov chain to realize precise short-term wind power predictions. First, three chaotic models are proposed for the prediction of chaotic time series, which can master physical principles in wind power processes and guide long-term prediction. Then, considering a mechanism switching between different physical models via a Markov chain, a combined model is constructed. Finally, the industrial data from a Chinese wind farm were taken as a study case, and the results validated the feasibility and superiority of the proposed prediction method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Short-term Prediction of Wind Power Output Based on Markov Chain
    Li, Dexin
    Lv, Xiangyu
    Song, Zhihui
    RENEWABLE ENERGY AND ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014, 448-453 : 1789 - 1795
  • [2] A Short-Term Rolling Prediction-Correction Method for Wind Power Output Based on LSTM and Markov Chain
    Ren, Chen
    Gu, Jiping
    Tian, Shuxin
    Zhou, Jian
    Shi, Shanshan
    Fu, Yang
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 574 - 580
  • [3] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [4] Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network
    Wang, Chia-Hung
    Zhao, Qigen
    Tian, Rong
    ENERGIES, 2023, 16 (11)
  • [5] Short-Term Prediction of Wind Power Based on Adaptive LSTM
    Xu, Gang
    Xia, Lu
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018,
  • [6] Short-Term Wind Power Prediction Based on Data Reconstruction and Improved Extreme Learning Machine
    Li, Haobo
    Zou, Hairong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (03) : 3669 - 3682
  • [7] Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain
    Liu, Yi
    He, Jun
    Wang, Yu
    Liu, Zong
    He, Lixun
    Wang, Yanyang
    ENERGIES, 2023, 16 (14)
  • [8] An Innovative Hybrid Algorithm for Very Short-Term Wind Speed Prediction Using Linear Prediction and Markov Chain Approach
    Kani, S. A. Pourmousavi
    Riahy, G. H.
    Mazhari, D.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2011, 8 (02) : 147 - 162
  • [9] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211
  • [10] Wind Power Short-Term Prediction by a Hybrid PSO-ANFIS Approach
    Pousinho, H. M. I.
    Catalao, J. P. S.
    Mendes, V. M. F.
    MELECON 2010: THE 15TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, 2010, : 955 - 960