Apache Spark Methods and Techniques in Big Data-A Review

被引:2
作者
Sahana, H. P. [1 ]
Sanjana, M. S. [1 ]
Muddasir, N. Mohammed [1 ]
Vidyashree, K. P. [1 ]
机构
[1] Vidyavardhaka Coll Engn, Dept Informat Sci & Engn, Mysuru, Karnataka, India
来源
INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019 | 2020年 / 89卷
关键词
Apache Spark; Big data; Data processing;
D O I
10.1007/978-981-15-0146-3_67
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Major online sites such as Amazon, eBay, and Yahoo are now adopting Spark. Many organizations run Spark in thousands of nodes available in the clusters. Spark is a "rapid cluster computing" and a broader data processing platform. It has a thirsty and active open-source community. Spark core is the Apache Spark kernel. We discuss in this paper the use and applications of Apache Spark, the mainstream of popular organization. These organizations extract, collect event data from the users' daily use, and engage in real-time interactions with such data. As a result, Apache Spark is a big data next-generation tool. It offers both batch and streaming capabilities to process data more quickly.
引用
收藏
页码:721 / 726
页数:6
相关论文
共 12 条
  • [1] Alsheikh MA, 2016, IEEE NETWORK, V31, P21
  • [2] Carlini E, 2014, LECT NOTES COMPUT SC, V8805, P129, DOI 10.1007/978-3-319-14325-5_12
  • [3] Chiba T, 2015, WORKLOAD CHARACTERIZ, P1
  • [4] Domoney WF, 2016, P 2015 IEEE INT RENE
  • [5] Genev P, 2016, 15 INT SEMANTIC WEB
  • [6] Gopalani S, 2015, INT J COMPUT APPL, V113, P8887
  • [7] Lu XY, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P253, DOI 10.1109/BigData.2016.7840611
  • [8] Maarala AI, 2015, PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, P2855, DOI 10.1109/BigData.2015.7364101
  • [9] Mushtaq H, 2015, IEEE INT C BIOINFORM, P1471, DOI 10.1109/BIBM.2015.7359893
  • [10] Triguero I, 2016, IEEE C EVOL COMPUTAT, P640, DOI 10.1109/CEC.2016.7743853