Photophysics of nanometer sized metal particles: Electron-phonon coupling and coherent excitation of breathing vibrational modes

被引:273
作者
Hodak, JH
Henglein, A
Hartland, GV [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Notre Dame Radiat Lab, Notre Dame, IN 46556 USA
关键词
D O I
10.1021/jp002256x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The wide variety of applications of metal nanoparticles has motivated many studies of their properties. Some important practical issues are how the size, composition and structure of these materials affect their catalytic and optical properties. In this article we review our recent work on the photophysics of metal nanoparticles. The systems that have been investigated include Au particles with sizes ranging from 2 nm diameter (several hundred atoms) to 120 nm diameter, and bimetallic core-shell particles composed of Au, Ag, Pt and/or Pb. These particles, which have a rather narrow size distribution, are prepared by radiolytic techniques. By performing time-resolved laser measurements we have been able to investigate the coupling between the electrons and phonons in the particles, and their low frequency "breathing" modes. These experiments show that for Au the time scale for electron-phonon coupling does not depend on size, in contrast to metals such as Ga and Ag. On the other hand, the frequency of the acoustic breathing modes strongly depends on the size of the particles, as well as their composition. These modes are impulsively excited by the rapid lattice heating that accompanies ultrafast laser excitation. The subsequent coherent nuclear motion modulates the transmitted probe laser intensity, giving a "beat" signal in our experiments. Unlike quantum-beats in molecules or semiconductors, this signal can be completely understood by classical mechanics.
引用
收藏
页码:9954 / 9965
页数:12
相关论文
共 117 条
  • [1] Shape-controlled synthesis of colloidal platinum nanoparticles
    Ahmadi, TS
    Wang, ZL
    Green, TC
    Henglein, A
    ElSayed, MA
    [J]. SCIENCE, 1996, 272 (5270) : 1924 - 1926
  • [2] Effect of cobalt-59 self-decoupling on the solid-state 31P CP/MAS NMR spectra of cobaloximes
    Schurko, Robert W.
    Wasylishen, Roderick E.
    Nelson, John H.
    [J]. Journal of physical chemistry, 1996, 100 (20) : 8053 - 8056
  • [3] Perspectives on the physical chemistry of semiconductor nanocrystals
    Alivisatos, AP
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) : 13226 - 13239
  • [4] SMALL PARTICLE MELTING OF PURE METALS
    ALLEN, GL
    BAYLES, RA
    GILE, WW
    JESSER, WA
    [J]. THIN SOLID FILMS, 1986, 144 (02) : 297 - 308
  • [5] Optical absorption spectra of nanocrystal gold molecules
    Alvarez, MM
    Khoury, JT
    Schaaff, TG
    Shafigullin, MN
    Vezmar, I
    Whetten, RL
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (19) : 3706 - 3712
  • [6] ''Coulomb staircase'' at room temperature in a self-assembled molecular nanostructure
    Andres, RP
    Bein, T
    Dorogi, M
    Feng, S
    Henderson, JI
    Kubiak, CP
    Mahoney, W
    Osifchin, RG
    Reifenberger, R
    [J]. SCIENCE, 1996, 272 (5266) : 1323 - 1325
  • [7] Ashcroft N. W., 1973, SOLID STATE PHYS
  • [8] Ultrafast optical properties of gold nanoshells
    Averitt, RD
    Westcott, SL
    Halas, NJ
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (10) : 1814 - 1823
  • [9] Ultrafast electron dynamics in gold nanoshells
    Averitt, RD
    Westcott, SL
    Halas, NJ
    [J]. PHYSICAL REVIEW B, 1998, 58 (16) : 10203 - 10206
  • [10] High-precision film thickness determination using a laser-based ultrasonic technique
    Banet, MJ
    Fuchs, M
    Rogers, JA
    Reinold, JH
    Knecht, JM
    Rothschild, M
    Logan, R
    Maznev, AA
    Nelson, KA
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (02) : 169 - 171