Patient-Specific Self-Powered Metamaterial Implants for Detecting Bone Healing Progress

被引:62
作者
Barri, Kaveh [1 ]
Zhang, Qianyun [1 ]
Swink, Isaac [2 ]
Aucie, Yashar [3 ]
Holmberg, Kyle [2 ]
Sauber, Ryan [2 ]
Altman, Daniel T. [2 ]
Cheng, Boyle C. [2 ]
Wang, Zhong Lin [4 ,5 ]
Alavi, Amir H. [1 ,3 ,6 ]
机构
[1] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA
[2] Allegheny Hlth Network, Dept Neurosurg, Pittsburgh, PA 15212 USA
[3] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[5] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[6] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
基金
美国国家卫生研究院;
关键词
bone healing; diagnostic; energy harvesting; medical implant; metamaterial; triboelectric nanogenerators; SPINAL-FUSION; SENSOR-DATA;
D O I
10.1002/adfm.202203533
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an unmet need for developing a new class of smart medical implants with novel properties and advanced functionalities. Here, the concept of "self-aware implants" is proposed to enable the creation of a new generation of multifunctional metamaterial implantable devices capable of responding to their environment, empowering themselves, and self-monitoring their condition. These functionalities are achieved via integrating nano energy harvesting and mechanical metamaterial design paradigms. Various aspects of the proposed concept are highlighted by developing proof-of-concept interbody spinal fusion cage implants with self-sensing, self-powering, and mechanical tunability features. Bench-top testing is performed using synthetic biomimetic and human cadaver spine models to evaluate the electrical and mechanical performance of the developed patient-specific metamaterial implants. The results show that the self-aware cage implants can diagnose bone healing process using the voltage signals generated internally through their built-in contact-electrification mechanisms. The voltage and current generated by the implants under the axial compression forces of the spine models reach 9.2 V and 4.9 nA, respectively. The metamaterial implants can serve as triboelectric nanogenerators to empower low-power electronics. The capacity of the proposed technology to revolutionize the landscape of implantable devices and to achieve better surgical outcomes is further discussed.
引用
收藏
页数:11
相关论文
共 47 条
[21]  
Ip H., 2015, IEEE LIFE SCI, V5, P41
[22]  
Kamel H.M., 2018, INT C APPL MECH MECH, P1
[23]   Maturation of the posterolateral spinal fusion and its effect on load-sharing of spinal instrumentation - An in vivo sheep model [J].
Kanayama, M ;
Cunningham, BW ;
Weis, JC ;
Parker, LM ;
Kaneda, K ;
McAfee, PC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (11) :1710-1720
[24]   Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading [J].
Kettler, A ;
Wilke, HJ ;
Dietl, R ;
Krammer, M ;
Lumeta, C ;
Claes, L .
JOURNAL OF NEUROSURGERY, 2000, 92 (01) :87-92
[25]   Material aspects of triboelectric energy generation and sensors [J].
Kim, Dong Wook ;
Lee, Ju Hyun ;
Kim, Jin Kon ;
Jeong, Unyong .
NPG ASIA MATERIALS, 2020, 12 (01)
[26]   Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials [J].
Kolken, Helena M. A. ;
Janbaz, Shahram ;
Leeflang, Sander M. A. ;
Lietaert, Karel ;
Weinans, Harrie H. ;
Zadpoor, Amir A. .
MATERIALS HORIZONS, 2018, 5 (01) :28-35
[27]   Multiaccess In Vivo Biotelemetry Using Sonomicrometry and M-Scan Ultrasound Imaging [J].
Kondapalli, Harsha ;
Alazzawi, Yarub ;
Malinowski, Marcin ;
Timek, Tomasz ;
Chakrabartty, Shantanu .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (01) :149-158
[28]  
Kondapalli Sri Harsha, 2021, IEEE Open J Eng Med Biol, V2, P17, DOI [10.1109/OJEMB.2021.3053174, 10.1109/ojemb.2021.3053174]
[29]   Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages [J].
Krammer, M ;
Dietl, R ;
Lumenta, CB ;
Kettler, A ;
Wilke, HJ ;
Büttner, A ;
Claes, L .
ACTA NEUROCHIRURGICA, 2001, 143 (12) :1217-1222
[30]   Biomechanical investigation of a minimally invasive posterior spine stabilization system in comparison to the Universal Spinal System (USS) [J].
Kubosch, D. ;
Kubosch, E. J. ;
Gueorguiev, B. ;
Zderic, I. ;
Windolf, M. ;
Izadpanah, K. ;
Suedkamp, N. P. ;
Strohm, P. C. .
BMC MUSCULOSKELETAL DISORDERS, 2016, 17