Algorithms and basic asymptotics for generalized numerical semigroups in N

被引:0
|
作者
Failla, Gioia [1 ]
Peterson, Chris [2 ]
Utano, Rosanna [3 ]
机构
[1] Univ Mediterranea Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Messina, Dipartimento Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
关键词
Numerical semigroup; Monoid; Frobenius number; FINITELY GENERATED SUBMONOIDS; GENUS; NUMBER;
D O I
10.1007/s00233-015-9690-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the monoid of natural numbers. A numerical semigroup is a cofinite submonoid . For the purposes of this paper, a generalized numerical semigroup (GNS) is a cofinite submonoid . The cardinality of is called the genus. We describe a family of algorithms, parameterized by (relaxed) monomial orders, that can be used to generate trees of semigroups with each GNS appearing exactly once. Let denote the number of generalized numerical semigroups of genus . We compute for small values of and provide coarse asymptotic bounds on for large values of . For a fixed , we show that is a polynomial function of degree . We close with several open problems/conjectures related to the asymptotic growth of and with suggestions for further avenues of research.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 50 条
  • [41] Almost symmetric numerical semigroups with high type
    Garcia Sanchez, Pedro A.
    Ojeda, Ignacio
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2499 - 2510
  • [42] Perfect numerical semigroups with embedding dimension three
    Angeles Moreno-Frias, Maria
    Carlos Rosales, Jose
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 77 - 84
  • [43] The covariety of numerical semigroups with fixed Frobenius number
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (02) : 555 - 568
  • [44] Balanced numerical semigroups
    Jeremy Thompson
    Kurt Herzinger
    Trae Holcomb
    Semigroup Forum, 2017, 94 : 632 - 649
  • [45] Balanced numerical semigroups
    Thompson, Jeremy
    Herzinger, Kurt
    Holcomb, Trae
    SEMIGROUP FORUM, 2017, 94 (03) : 632 - 649
  • [46] Counting Numerical Semigroups
    Kaplan, Nathan
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (09) : 862 - 875
  • [47] Geometrical illustration of numerical semigroups and of some of their invariants
    E. Kunz
    R. Waldi
    Semigroup Forum, 2014, 89 : 664 - 691
  • [48] Numerical semigroups bounded by the translation of a plane monoid
    Moreno-Frias, M. A.
    Rosales, J. C.
    AEQUATIONES MATHEMATICAE, 2021, 95 (05) : 915 - 929
  • [49] Numerical semigroups: Apéry sets and Hilbert series
    Jorge L. Ramírez Alfonsín
    Øystein J. Rødseth
    Semigroup Forum, 2009, 79 : 323 - 340
  • [50] On the Enumeration of Arf Numerical Semigroups with Given Multiplicity and Conductor
    Karakas, Halil Ibrahim
    Tutas, Nesrin
    SEMIGROUP FORUM, 2025, : 308 - 316