Algorithms and basic asymptotics for generalized numerical semigroups in N

被引:0
|
作者
Failla, Gioia [1 ]
Peterson, Chris [2 ]
Utano, Rosanna [3 ]
机构
[1] Univ Mediterranea Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Messina, Dipartimento Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
关键词
Numerical semigroup; Monoid; Frobenius number; FINITELY GENERATED SUBMONOIDS; GENUS; NUMBER;
D O I
10.1007/s00233-015-9690-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the monoid of natural numbers. A numerical semigroup is a cofinite submonoid . For the purposes of this paper, a generalized numerical semigroup (GNS) is a cofinite submonoid . The cardinality of is called the genus. We describe a family of algorithms, parameterized by (relaxed) monomial orders, that can be used to generate trees of semigroups with each GNS appearing exactly once. Let denote the number of generalized numerical semigroups of genus . We compute for small values of and provide coarse asymptotic bounds on for large values of . For a fixed , we show that is a polynomial function of degree . We close with several open problems/conjectures related to the asymptotic growth of and with suggestions for further avenues of research.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 50 条
  • [31] The Frobenius problem for repunit numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    RAMANUJAN JOURNAL, 2016, 40 (02) : 323 - 334
  • [32] Numerical semigroups generated by quadratic sequences
    Mara Hashuga
    Megan Herbine
    Alathea Jensen
    Semigroup Forum, 2022, 104 : 330 - 357
  • [33] The set of numerical semigroups of a given genus
    Blanco, V.
    Rosales, J. C.
    SEMIGROUP FORUM, 2012, 85 (02) : 255 - 267
  • [34] Ratio-Covarieties of Numerical Semigroups
    Moreno-Frias, Maria angeles
    Rosales, Jose Carlos
    AXIOMS, 2024, 13 (03)
  • [35] The Frobenius problem for a class of numerical semigroups
    Gu, Ze
    Tang, Xilin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1335 - 1347
  • [36] The Frobenius problem for Thabit numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    JOURNAL OF NUMBER THEORY, 2015, 155 : 85 - 99
  • [37] The Frobenius problem for repunit numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    The Ramanujan Journal, 2016, 40 : 323 - 334
  • [38] CONSTRUCTING ALMOST SYMMETRIC NUMERICAL SEMIGROUPS FROM IRREDUCIBLE NUMERICAL SEMIGROUPS
    Rosales, J. C.
    Garcia-Sanchez, P. A.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 1362 - 1367
  • [39] Counting numerical semigroups by genus and even gaps
    Bernardini, Matheus
    Torres, Fernando
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2853 - 2863
  • [40] Numerical semigroups with quasi maximal embedding dimension
    Llena, D.
    Rosales, J. C.
    RICERCHE DI MATEMATICA, 2024, : 731 - 749