Algorithms and basic asymptotics for generalized numerical semigroups in N

被引:0
|
作者
Failla, Gioia [1 ]
Peterson, Chris [2 ]
Utano, Rosanna [3 ]
机构
[1] Univ Mediterranea Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Messina, Dipartimento Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
关键词
Numerical semigroup; Monoid; Frobenius number; FINITELY GENERATED SUBMONOIDS; GENUS; NUMBER;
D O I
10.1007/s00233-015-9690-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the monoid of natural numbers. A numerical semigroup is a cofinite submonoid . For the purposes of this paper, a generalized numerical semigroup (GNS) is a cofinite submonoid . The cardinality of is called the genus. We describe a family of algorithms, parameterized by (relaxed) monomial orders, that can be used to generate trees of semigroups with each GNS appearing exactly once. Let denote the number of generalized numerical semigroups of genus . We compute for small values of and provide coarse asymptotic bounds on for large values of . For a fixed , we show that is a polynomial function of degree . We close with several open problems/conjectures related to the asymptotic growth of and with suggestions for further avenues of research.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 50 条
  • [21] Bracelet monoids and numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2016, 27 (03) : 169 - 183
  • [22] Bracelet monoids and numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    Applicable Algebra in Engineering, Communication and Computing, 2016, 27 : 169 - 183
  • [23] p-Numerical semigroups with p-symmetric properties
    Komatsu, Takao
    Ying, Haotian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (13)
  • [24] Numerical semigroups II: Pseudo-symmetric AA-semigroups
    Garcia-Marco, Ignacio
    Alfonsin, Jorge L. Ramirez
    Rodseth, Oystein J.
    JOURNAL OF ALGEBRA, 2017, 470 : 484 - 498
  • [25] On the Frobenius number and genus of a collection of semigroups generalizing repunit numerical semigroups
    Liu, Feihu
    Xin, Guoce
    Ye, Suting
    Yin, Jingjing
    SEMIGROUP FORUM, 2025, : 357 - 383
  • [26] p-Numerical Semigroups of Generalized Fibonacci Triples
    Komatsu, Takao
    Laishram, Shanta
    Punyani, Pooja
    SYMMETRY-BASEL, 2023, 15 (04):
  • [27] The Frobenius problem for Mersenne numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    Mathematische Zeitschrift, 2017, 286 : 741 - 749
  • [28] The Frobenius problem for Mersenne numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 741 - 749
  • [29] NUMERICAL SEMIGROUPS BOUNDED BY A CYCLIC MONOID
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1219 - 1231
  • [30] The set of numerical semigroups of a given genus
    V. Blanco
    J. C. Rosales
    Semigroup Forum, 2012, 85 : 255 - 267