Algorithms and basic asymptotics for generalized numerical semigroups in N

被引:0
|
作者
Failla, Gioia [1 ]
Peterson, Chris [2 ]
Utano, Rosanna [3 ]
机构
[1] Univ Mediterranea Reggio Calabria, DIIES, Via Graziella, Reggio Di Calabria, Italy
[2] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[3] Univ Messina, Dipartimento Matemat & Informat, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
关键词
Numerical semigroup; Monoid; Frobenius number; FINITELY GENERATED SUBMONOIDS; GENUS; NUMBER;
D O I
10.1007/s00233-015-9690-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the monoid of natural numbers. A numerical semigroup is a cofinite submonoid . For the purposes of this paper, a generalized numerical semigroup (GNS) is a cofinite submonoid . The cardinality of is called the genus. We describe a family of algorithms, parameterized by (relaxed) monomial orders, that can be used to generate trees of semigroups with each GNS appearing exactly once. Let denote the number of generalized numerical semigroups of genus . We compute for small values of and provide coarse asymptotic bounds on for large values of . For a fixed , we show that is a polynomial function of degree . We close with several open problems/conjectures related to the asymptotic growth of and with suggestions for further avenues of research.
引用
收藏
页码:460 / 473
页数:14
相关论文
共 50 条
  • [1] Algorithms for generalized numerical semigroups
    Cisto, Carmelo
    Delgado, Manuel
    Garcia-Sanchez, Pedro A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [2] Algorithms and basic asymptotics for generalized numerical semigroups in Nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}^d$$\end{document}
    Gioia Failla
    Chris Peterson
    Rosanna Utano
    Semigroup Forum, 2016, 92 (2) : 460 - 473
  • [3] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Branco, Manuel B.
    Colaco, Isabel
    Ojeda, Ignacio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [4] The Frobenius Problem for Generalized Repunit Numerical Semigroups
    Manuel B. Branco
    Isabel Colaço
    Ignacio Ojeda
    Mediterranean Journal of Mathematics, 2023, 20
  • [5] A generalization of Wilf's conjecture for generalized numerical semigroups
    Cisto, Carmelo
    DiPasquale, Michael
    Failla, Gioia
    Flores, Zachary
    Peterson, Chris
    Utano, Rosanna
    SEMIGROUP FORUM, 2020, 101 (02) : 303 - 325
  • [6] A generalization of Wilf’s conjecture for generalized numerical semigroups
    Carmelo Cisto
    Michael DiPasquale
    Gioia Failla
    Zachary Flores
    Chris Peterson
    Rosanna Utano
    Semigroup Forum, 2020, 101 : 303 - 325
  • [7] Numerical Semigroups with a Fixed Fundamental Gap
    Moreno-Frias, Maria angeles
    Rosales, Jose Carlos
    MATHEMATICS, 2025, 13 (01)
  • [8] Numerical semigroups of small and large type
    Singhal, Deepesh
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (05) : 883 - 902
  • [9] Numerical semigroups generated by quadratic sequences
    Hashuga, Mara
    Herbine, Megan
    Jensen, Alathea
    SEMIGROUP FORUM, 2022, 104 (02) : 330 - 357
  • [10] The Corner Element of Generalized Numerical Semigroups
    Bernardini, Matheus
    Tenorio, Wanderson
    Tizziotti, Guilherme
    RESULTS IN MATHEMATICS, 2022, 77 (04)