Optimizing Non-viral Gene Therapy Vectors for Delivery to Photoreceptors and Retinal Pigment Epithelial Cells

被引:5
|
作者
Zulliger, Rahel [1 ]
Watson, Jamie N. [2 ]
Al-Ubaidi, Muayyad R. [1 ]
Padegimas, Linas [3 ]
Sesenoglu-Laird, Ozge [4 ]
Cooper, Mark J. [4 ]
Naash, Muna I. [1 ]
机构
[1] Univ Houston, Dept Biomed Engn, Houston, TX 77004 USA
[2] Univ Oklahoma, Hlth Sci Ctr, Dept Cell Biol, Oklahoma City, OK USA
[3] Abeona Therapeut Inc, Cleveland, OH USA
[4] Copernicus Therapeut Inc, Cleveland, OH USA
来源
RETINAL DEGENERATIVE DISEASES: MECHANISMS AND EXPERIMENTAL THERAPY | 2018年 / 1074卷
关键词
Non-viral; Gene therapy; Nanoparticles; Inherited retinal degeneration; Photoreceptor; Retinal pigment epithelium; COMPACTED DNA NANOPARTICLES; RETINITIS-PIGMENTOSA; PLASMID DNA; EXPRESSION; LUNG; POLYLYSINE; PHENOTYPE; MODEL;
D O I
10.1007/978-3-319-75402-4_14
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Considerable progress has been made in the design and delivery of non-viral gene therapy vectors, but, like their viral counterparts, therapeutic levels of transgenes have not met the requirements for successful clinical applications so far. The biggest advantage of polymer-based nanoparticle vectors is the ease with which they can be modified to increase their ability to penetrate the cell membrane and target specific cells by simply changing the formulation of the nanoparticle compaction. We took advantage of this characteristic to improve transfection rates of our particles to meet the transgene levels which will be needed for future treatment of patients. For this study, we successfully investigated the possibility of our established pegylated polylysine particles to be administered via intravitreal rather than subretinal route to ease the damage during injection. We also demonstrated that our particles are flexible enough to sustain changes in the formulation to accommodate additional targeting sequences without losing their efficiency in transfecting neuronal cells in the retina. Together, these results give us the opportunity to even further improve our particles.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [21] Non-viral strategies for ocular gene delivery
    Oliveira, Ana V.
    da Costa, Ana M. Rosa
    Silva, Gabriela A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 77 : 1275 - 1289
  • [22] Transferrin Non-Viral Gene Therapy for Treatment of Retinal Degeneration
    Bigot, Karine
    Gondouin, Pauline
    Benard, Romain
    Montagne, Pierrick
    Youale, Jenny
    Piazza, Marie
    Picard, Emilie
    Bordet, Thierry
    Behar-Cohen, Francine
    PHARMACEUTICS, 2020, 12 (09) : 1 - 22
  • [23] Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer
    Kanvinde, Shrey
    Kulkarni, Tanmay
    Deodhar, Suyash
    Bhattacharya, Deep
    Dasgupta, Aneesha
    BIOTECH, 2022, 11 (01):
  • [24] Non-viral vectors for RNA delivery
    Yan, Yi
    Liu, Xiao-Yu
    Lu, An
    Wang, Xiang-Yu
    Jiang, Lin-Xia
    Wang, Jian-Cheng
    JOURNAL OF CONTROLLED RELEASE, 2022, 342 : 241 - 279
  • [25] Non-viral gene delivery in vivo for gene therapy
    Bogdanenko, EV
    Sviridov, YV
    Moskovtsev, AA
    Zhdanov, RI
    VOPROSY MEDITSINSKOI KHIMII, 2000, 46 (03): : 226 - 245
  • [26] Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy
    Lee, Ah Young
    Cho, Myung-Haing
    Kim, Sanghwa
    EXPERT OPINION ON DRUG DELIVERY, 2019, 16 (07) : 757 - 772
  • [27] Gene therapy for haemophilia...yes, but...with non-viral vectors?
    Liras, A.
    Olmedillas, S.
    HAEMOPHILIA, 2009, 15 (03) : 811 - 816
  • [28] Non-viral Delivery Systems for Breast Cancer Gene Therapy
    Vaseghi, Golnaz
    Rafiee, Laleh
    Javanmard, Shaghayegh Haghjooy
    CURRENT GENE THERAPY, 2017, 17 (02) : 147 - 153
  • [29] Non-viral polyplexes: Scaffold mediated delivery for gene therapy
    O'Rorke, Suzanne
    Keeney, Michael
    Pandit, Abhay
    PROGRESS IN POLYMER SCIENCE, 2010, 35 (04) : 441 - 458
  • [30] Gene delivery based on non-viral vector for therapy of acute lung injury
    Zhang, Jian
    Wang, Tingting
    Zheng, Rui
    Wang, Xingxing
    PROCESS BIOCHEMISTRY, 2023, 124 : 44 - 50