Data-Centric Approaches to Radio Frequency Machine Learning

被引:4
|
作者
Kuzdeba, Scott [1 ]
Robinson, Josh [1 ]
机构
[1] BAE Syst, FAST Labs, Merrimack, NH 03054 USA
关键词
RF; Communications; Modulation Recognition; Deep Learning; Machine Learning; Dilated Causal Convolution; RiftNet(TM) ModRec; Data-Centric; AUTOMATIC MODULATION RECOGNITION;
D O I
10.1109/MILCOM55135.2022.10017662
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The successes of machine learning (ML), and in particular deep learning, in other fields has inspired similar research within the radio frequency (RF) domain. Initial research in RF ML has been largely applied to the application of modulation recognition, with the past several years seeing it expand into other applications as well. The field has slowly evolved from the direct application of models developed in other fields, e.g., convolutional neural networks (CNN), to ones that are better suited for RF signals, e.g., dilated causal convolutions (DCCs). At the same time, the broader ML community has realized the importance data has on deep learning performance and a growing datacentric ML movement has emerged. In this paper, we return to the problem of modulation recognition and provide insights into how a data-centric approach can be coupled with a DCC model. In particular, we look at cases with limited amounts of training data and investigate means to achieve levels of performance typical reserved for larger training datasets. This is done by developing specific SNR models, data augmentation, performing multi-burst processing, and upsampling expected undersampled parts of an unbalanced training dataset. Overall, we present ways to intelligently use sparse available data to achieve the same performance as larger datasets, helping to mitigate a challenge in RF ML where gathering and curating large representative datasets is not always feasible.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Data-centric Engineering: integrating simulation, machine learning and statistics. Challenges and opportunities
    Pan, Indranil
    Mason, Lachlan R.
    Matar, Omar K.
    CHEMICAL ENGINEERING SCIENCE, 2022, 249
  • [32] Data-centric framework for crystal structure identification in atomistic simulations using machine learning
    Chung, Heejung W.
    Freitas, Rodrigo
    Cheon, Gowoon
    Reed, Evan J.
    PHYSICAL REVIEW MATERIALS, 2022, 6 (04)
  • [33] Data-Centric Machine Learning: Improving Model Performance and Understanding Through Dataset Analysis
    Westermann, Hannes
    Savelka, Jaromir
    Walker, Vern R.
    Ashley, Kevin D.
    Benyekhlef, Karim
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 346 : 54 - 57
  • [34] Dynamically Switching Execution Context in Data-Centric BPM Approaches
    Andrews, Kevin
    Steinau, Sebastian
    Reichert, Manfred
    ENTERPRISE, BUSINESS-PROCESS AND INFORMATION SYSTEMS MODELING, BPMDS 2020, EMMSAD 2020, 2020, 387 : 3 - 19
  • [35] Data-Centric AI
    Malerba, Donato
    Pasquadibisceglie, Vincenzo
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, 62 (06) : 1493 - 1502
  • [36] Analyzing Data-Centric Properties for Graph Contrastive Learning
    Trivedi, Puja
    Lubana, Ekdeep Singh
    Heimann, Mark
    Koutra, Danai
    Thiagarajan, Jayaraman J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [37] Smart cities: the role of Internet of Things and machine learning in realizing a data-centric smart environment
    Ullah, Amin
    Anwar, Syed Myhammad
    Li, Jianqiang
    Nadeem, Lubna
    Mahmood, Tariq
    Rehman, Amjad
    Saba, Tanzila
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 1607 - 1637
  • [38] Smart cities: the role of Internet of Things and machine learning in realizing a data-centric smart environment
    Amin Ullah
    Syed Myhammad Anwar
    Jianqiang Li
    Lubna Nadeem
    Tariq Mahmood
    Amjad Rehman
    Tanzila Saba
    Complex & Intelligent Systems, 2024, 10 : 1607 - 1637
  • [39] Exploiting Data-Centric Social Context in Phone Call Prediction: A Machine Learning based Study
    Sarker, Iqbal H.
    EAI ENDORSED TRANSACTIONS ON SCALABLE INFORMATION SYSTEMS, 2019, 6 (20): : 1 - 9
  • [40] Data-Centric Operational Design Domain Characterization for Machine Learning-Based Aeronautical Products
    Kaakai, Fateh
    Adibhatla, Sridhar
    Pai, Ganesh
    Escorihuela, Emmanuelle
    COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2023, 2023, 14181 : 227 - 242