Computer vision-based technique to measure displacement in selected soil tests

被引:0
|
作者
Obaidat, MT [1 ]
Attom, MF [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Civil Engn, Irbid, Jordan
来源
GEOTECHNICAL TESTING JOURNAL | 1998年 / 21卷 / 01期
关键词
computer vision; normal case photography; soil properties; displacement; strain;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The potential of normal case photography using charge-coupled-device (CCD) cameras to extract deformation (strain) in soil specimens of two soil tests, i.e., the unconfined compression test and the direct shear test, was investigated. A PC-based digital vision system was used to obtain accurately measured linear displacement. Using remolded soil specimens, comparisons between displacement measurements using ASTM conventional methods and the normal case photography method showed that use of the latter method is promising and could be used as a substitute for strain gages. Experimental investigation showed that differences between displacement measurements using conventional ASTM procedures and computer vision technique were consistently within 0.04 +/- 0.15 to 0.3 +/- 0.23 mm for unconfined compression tests and direct shear tests, respectively. This was compatible with the image scale where one pixel on the image domain was equivalent to about 0.4 mm on object space coordinates. Statistical correlations between strains by the two methods supported this result. Image scale and resolution were found to be the two major factors affecting the accuracy of the measurements. The results of this work are expected to open the door for geotechnical engineers and agencies responsible for soil testing standards to incorporate image-based analysis in soil testing. This will indeed bridge the gap between manual and fully automated soil testing measurements.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [1] A Computer Vision-based Approach for Structural Displacement Measurement
    Ji, Yunfeng
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2010, 2010, 7647
  • [2] Review of Computer Vision-based Structural Displacement Monitoring
    Ye X.-W.
    Dong C.-Z.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2019, 32 (11): : 21 - 39
  • [3] Computer vision-based displacement and vibration monitoring without using physical target on structures
    Khuc, Tung
    Catbas, F. Necati
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2017, 13 (04) : 505 - 516
  • [4] Computer vision-based displacement measurement with m-sequence target
    Hu, Yi-ding
    Xia, Qi
    Hou, Rong-rong
    Xia, Yong
    Yan, Jian-yi
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (03) : 537 - 546
  • [5] Computer Vision-Based Structural Displacement Measurement Robust to Light-Induced Image Degradation for In-Service Bridges
    Lee, Junhwa
    Lee, Kyoung-Chan
    Cho, Soojin
    Sim, Sung-Han
    SENSORS, 2017, 17 (10)
  • [6] A computer vision-based method for bridge model updating using displacement influence lines
    Martini, Alberto
    Tronci, Eleonora M.
    Feng, Maria Q.
    Leung, Ryan Y.
    ENGINEERING STRUCTURES, 2022, 259
  • [7] Review on computer vision-based inspection and monitoring for bridge cables
    Ji, Wei
    Luo, Ke
    Luo, Kui
    MEASUREMENT, 2025, 248
  • [8] A generic computer vision-based monocular six-degree-of-freedom displacement measurement method
    Wang, Yize
    Liu, Zhenqing
    JOURNAL OF SOUND AND VIBRATION, 2025, 604
  • [9] A Vision-Based Sensor for Noncontact Structural Displacement Measurement
    Feng, Dongming
    Feng, Maria Q.
    Ozer, Ekin
    Fukuda, Yoshio
    SENSORS, 2015, 15 (07): : 16557 - 16575
  • [10] Computer vision-based construction progress monitoring
    Reja, Varun Kumar
    Varghese, Koshy
    Ha, Quang Phuc
    AUTOMATION IN CONSTRUCTION, 2022, 138